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ABSTRACT

Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory
explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this understanding
relies on the existence of either an initial superrotating or a sheared flow, coupled with a slow evolution such that a linear steady state
can be reached.
Aims. A consistent physical understanding of superrotation is needed for arbitrary drag and radiative timescales, and the relevance of
considering linear steady states needs to be assessed.
Methods. We obtain an analytical expression for the structure, frequency and decay rate of propagating waves in hot Jupiter atmo-
spheres around a state at rest in the 2D shallow-water β–plane limit. We solve this expression numerically and confirm the robustness
of our results with a 3D linear wave algorithm. We then compare with 3D simulations of hot Jupiter atmospheres and study the non
linear momentum fluxes.
Results. We show that the dynamics does not transit through a linear steady state when starting from an initial atmosphere in solid
body rotation. We further show that non–linear effects favour the initial spin-up of superrotation and that the acceleration due to the
vertical component of the eddy–momentum flux is critical to the initial development of superrotation .
Conclusions. Overall, we describe the initial phases of the acceleration of superrotation, including consideration of differing radia-
tive and drag timescales, and conclude that eddy-momentum driven superrotating equatorial jets are robust, physical phenomena in
simulations of hot Jupiter atmospheres.

Key words. Planets and satellites: gaseous planets – Planets and satellites: atmospheres – Hydrodynamics – Waves – Methods:
analytical – Methods: numerical

1. Introduction

Understanding the atmospheric dynamics of hot Jupiters, Jovian
planets in short period orbits, has been a major challenge since
their discovery (Mayor & Queloz 1995). Due to their proximity
to their host star hot Jupiters are expected to be tidally–locked
(see Baraffe et al. 2010, for review), resulting in a permanent day
and night side driving atmospheric circulations with no equiva-
lent in our solar system, which in turn likely mix material be-
tween the two hemispheres (Drummond et al. 2018b,c).

Cooper & Showman (2005) performed the first study of the
atmosphere of HD 209458b (e.g., Charbonneau et al. 2002; Sing
et al. 2008; Snellen et al. 2008) using a General Circulation
Model (GCM), and such GCMs have subsequently been used ex-
tensively to characterise hot Jupiters (e.g., Showman et al. 2008;
Heng et al. 2011; Rauscher & Menou 2012; Dobbs-Dixon &
Agol 2013; Mayne et al. 2014; Helling et al. 2016). The physi-
cal complexity, or completeness, of these GCMs varies greatly,
for example treatments of the dynamics and radiative transfer
range from those adopting the primitive equations of dynamics,
and simple Newtonian cooling, to those solving the full Navier–
Stokes equations and more accurate radiative transfer (see, no-
tably, Amundsen et al. 2014; Amundsen et al. 2016). Recent
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advances have also been made in the treatment of chemistry,
regarding both the gas phase (see Drummond et al. 2016; Tsai
et al. 2017; Drummond et al. 2018a,b,c) and the condensates, or
clouds (Lee et al. 2016; Lines et al. 2018b,a; Roman & Rauscher
2019).

A common feature has emerged from almost all GCM studies
of hot Jupiters: the atmosphere exhibits equatorial superrotation,
a prograde atmospheric wind velocity greater than that arising
from the rotation of the planet alone, over a range of pressures.
Observations have detected an eastward shift of the peak infrared
flux from the substellar point in the atmosphere of hot Jupiters
(Knutson et al. 2007; Zellem et al. 2014), consistent with that
found in simulations caused by the advection of heat by the su-
perrotating jet. Mayne et al. (2017) attempted to suppress the for-
mation of the equatorial jet in simulated hot Jupiter atmospheres
by forcing the deep atmospheric flow, or altering the model pa-
rameters. They found superrotation to be a very robust feature in
numerical simulations. However, a recent measurement has in-
ferred an opposite, westward shift for COROT–2b (Dang et al.
2018), and Armstrong et al. (2016) previously obtained variabil-
ity in the position of the hot spot with time suggesting additional
complexity (a potential link to magnetic fields has recently been
investigated by Hindle et al. 2019). Superrotation therefore has
to be explained with sound physical arguments.
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Showman & Polvani (2011) were the first to study the forma-
tion of a superrotating jet in simulated hot Jupiter atmospheres
using a simplified two–layer model. Exploring the linear steady
state of the atmosphere Showman & Polvani (2011) highlighted
the formation of a Matsuno–Gill (hereafter MG, see Matsuno
1966; Gill 1980) pattern, where the atmospheric perturbations
are ‘tilted’ in the latitude-longitude plane driving momentum
transport to the equator and accelerating the jet. Showman &
Polvani (2011) posit that the non–linear equilibrium is reached
when the transport of meridional and vertical eddy momentum
into the region, acting to accelerate and decelerate the jet, respec-
tively, are balanced by the atmospheric drag. Tsai et al. (2014)
extended the study to a full 3D dynamical model including con-
sideration of the resonance of the atmospheric wave response, as
well as the ’tilt’ of the vertical component which acts to drive
the vertical eddy–momentum transport, under the assumption of
equal drag and radiative timescales. This was followed by Ham-
mond & Pierrehumbert (2018) who explored superrotation in 2D
with the addition of a shearing flow. Perez-Becker & Showman
(2013) considered the propagation of waves and the resulting
balance for the equilibrated jet and propose diagnostics for pre-
dicting the day to night temperature contrast, controlled by the
efficiency of the zonal advection. This analysis was later im-
proved upon by Komacek & Showman (2016), across an exten-
sive range of dissipation timescales.

There is however an inherent discrepancy between the works
of Komacek & Showman (2016) and Showman & Polvani
(2011): when the atmospheric drag timescale is large, superior
to a few 105 s, the linear steady states obtained in Komacek
& Showman (2016) tend to decelerate the equator although the
associated non linear steady states exhibit equatorial superrota-
tion. This raises the question: is superrotation properly explained
through the transition from a linear steady state ?

Specifically, the study of Tsai et al. (2014) is only valid in
the moderate to strong dissipation limit, and that of Hammond
& Pierrehumbert (2018) requires an initial sheared superrotation.
However, Komacek & Showman (2016) showed that superrota-
tion develops only if the dissipation is sufficiently low (see their
Figure 4). Current theories are therefore applicable only once an
initial flow has been set up, and its evolution is slow compared
to the wave propagation time.

In this study, we address the issue of what is driving the
initial spin up of superrotation in simulated hot Jupiter atmo-
spheres. In order to do this we develop a description of the time
dependent waves supported by our simulations of hot Jupiters at-
mospheres with arbitrary drag and radiative timescales, and de-
termine which are responsible for driving the evolution of the jet.
Firstly, in Section 2 we state our main assumptions and develop
the mathematical framework we adopt throughout this work, be-
fore finding the form of the time dependent linear solution to
the beta–plane equations. Additionally, in this section we sum-
marise the main results of Showman & Polvani (2011), Tsai et al.
(2014) and Komacek & Showman (2016) upon which we base
our study. Obtaining the form of the solution to the time depen-
dent case is not sufficient as the controlling parameters remain
unconstrained and are not easily accessible analytically. There-
fore, in Section 3 we numerically explore the sensitivity of the
steady linear solution to the shape of the forcing, or heating,
showing that the linear steady state requires a day–night heat-
ing contrast but is insensitive to the exact shape of the forc-
ing itself. This confirms that the limitations of the current the-
ory do not come from the simplified form of the forcing, but
that time–dependent linear considerations must be included. We
therefore study numerically the propagating waves, except for

the special case of Kelvin waves which have an analytical ex-
pression, to build a more complete picture of the physical pro-
cess of acceleration of superrotation. In Section 4 we determine
the characteristic decay timescale for different waves and arbi-
trary dissipative timescales, which are used to explain the struc-
ture of both the linear steady states presented in Komacek &
Showman (2016) (their Figure 5) and the time–dependent linear
evolution of simulated hot Jupiters. In Section 5, we then com-
bine the understanding developed throughout this study to detail
the transition to superrotation in 3D GCM simulations through
eddy–mean flow interaction under different conditions, revealing
the importance of time–dependent linear considerations as well
as vertical momentum transport across different drag and forc-
ing regimes. Finally, we summarise our conclusions in Section
6. Overall, our study shows that the paradigm of equatorial su-
perrotation in hot Jupiters is robust: superrotation is accelerated
by an eddy–mean flow interaction (i.e. atmospheric waves inter-
acting with the background flow), and is strongly influenced by
the wave dissipation timescales and vertical momentum conver-
gence.

2. Solution to 2D Shallow Water Equation

2.1. Theoretical framework

For this study we adopt the 2D shallow water equations under the
equatorial β–plane approximation. As in Showman & Polvani
(2011), the shallow water approximation consists of considering
that the planet can be decomposed into an upper, constant den-
sity but dynamically active layer with a free surface at the bottom
exchanging heat and momentum with a lower, quiescent layer
of much higher density. The equatorial β–plane simplifies the
spherical planet as a local Cartesian plane at the equator, with the
Coriolis parameter depending linearly on the Cartesian merid-
ional coordinate, y, with a factor of proportionality β = 2Ω/R,
where Ω is the rotation rate of the planet and R its radius. The
further away from the equator, the less valid this approximation
is but it allows for analytic solutions, particularly suited for the
study of equatorial superrotation. Wu et al. (2000) showed that
the 3D structure of solutions to the β–plane system can be de-
composed onto an infinite sum of solutions of 2D β–planes with
different characteristic heights. The importance of this decom-
position regarding hot Jupiter atmospheric dynamics has been
emphasised by Tsai et al. (2014), where a vertical shift of the
wave response is presented when the mean background velocity
is changed (their Figure 10). We begin by summarising the main
results of Matsuno (1966), Gill (1980) and Showman & Polvani
(2011), all of which solve the 2D β–plane equations.

Following Showman & Polvani (2011), the non–
dimensional, linearised equations of motion for a forced
2D, equatorial β–plane can be written as

∂u
∂t
− yv +

∂h
∂x

+
u

τdrag
= 0, (1)

∂v
∂t

+ yu +
∂h
∂y

+
v

τdrag
= 0, (2)

∂h
∂t

+
∂u
∂x

+
∂v
∂y

+
h
τrad

= Q, (3)

where x and y are the horizontal coordinates, t is time, u is the
zonal velocity (x direction), v the meridional (y direction), h the
height (H) of the shallow water fluid minus the initial, hori-
zontally constant height (H0), i.e. h = H − H0, τdrag the drag
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timescale, τrad the radiative timescale and Q the heating func-
tion. The characteristic length, speed and time, corresponding to
the Rossby deformation radius, the gravity wave speed and the
time for a gravity wave to cross a deformation radius in the shal-
low water system are:

L =
(
β−1

√
gH0

)1/2
, (4)

U =
√

gH0, (5)

T =
(
β
√

gH0

)−1/2
, (6)

respectively, where g is the gravitational acceleration assumed
constant, and β = 2Ω cos φ/R or the derivative of the Rossby
parameter with φ the latitude of the β–plane. In the rest of this
paper we only consider φ = 0.

Eqs.(1) to (3) form a linear differential equation of the form
∂X/∂t = LX +Q where X = (u, v, h) is a vector of solutions, L a
linear operator andQ = (0, 0,Q) is the vector form of the forcing.
Hence the solution is the sum of a homogeneous and a particular
solution. The spatial part of the 3D solution can be expressed as
an infinite sum of modes indexed by m with equivalent depth Hm
instead of H0. The orthogonal base functions are sinusoidal in z,
the vertical coordinate, and of the form ei(mz) with m ∈ N and
the heating must be decomposed onto these functions (see Tsai
et al. (2014) section 2 for the rescaling of z and Wu et al. (2000)
section 2 for a discussion on boundary conditions).

When neither drag nor heating are considered, Matsuno
(1966) expressed the analytic solutions to the homogeneous
equations in the form {u, v, h} = {ũ, ṽ, h̃} exp(iωt + ikx), where
ω is the complex frequency, k the longitudinal wavenumber and
a tilde denotes a function of y only. Dropping the tilde for sim-
plicity, the homogeneous equations can be expressed as:

iωu − yv + ikh = 0, (7)

iωv + yu +
∂h
∂y

= 0, (8)

iωh + iku +
∂v
∂y

= 0 . (9)

Matsuno (1966) showed that this system reduces to a single
equation for v, namely,

∂2v
∂y2 + (ω2 − k2 +

k
ω
− y2)v = 0. (10)

By analogy with the Schrödinger equation of a simple harmonic
oscillator, the boundary condition v→ 0 when |y| → ∞ requires

ω2 − k2 +
k
ω

= 2n + 1, (11)

with n ∈ N. As this is a third order equation, the eigenvalues
for the frequency are labelled ωn,l with l = 0, 1, 2, and the corre-
sponding eigenvectors are labelled X̃n,l = (un,l, vn,l, hn,l),. Finally,
the case where n = 0 is treated separately, and the important case
where v is identically null is similar to a coastal Kelvin wave,
with ω = −k (Matsuno 1966). The form of the solutions in the y
direction are expressed through the use of the parabolic cylinder
functions ψn, given by

ψn(y) = Hn(y)e−y2/2, (12)

where Hn is the nth Hermite polynomial. Finally, simple mathe-
matical arguments show that the eigenvalue ω is always real: the
homogeneous solutions are only neutral modes. Matsuno (1966)

also showed that the eigenvectors of Eqs.(7) to (9) form a com-
plete, orthogonal set of the 2D beta-plane: at a given time, any
function on the beta plane can be written as a linear combination
of the ψn(y) exp(ikx) functions.

Matsuno (1966) and Gill (1980) obtained the steady state so-
lution to Eqs.(1) to (3) under the inclusion of heating (and cool-
ing) and drag. The completeness and orthogonality of the above
functions allows one to write:

Q =
∑
n,l

qn,lX̃n,l, (13)

where qn,l is the projection of Q onto X̃n,l. Matsuno (1966) (their
Eq.(34)) and Gill (1980) showed that a steady solution X to the
forced problem with τdrag = τrad is given by

X =
∑
n,l

qn,l

τ−1
drag − iωn,l

X̃n,l. (14)

Showman & Polvani (2011) showed that, for a horizontal
wavenumber one representing the asymmetric heating of hot
Jupiters and τdrag = τrad = 105 s, the steady linear solution ex-
hibits a ‘chevron’ shaped pattern (in pressure, density or tem-
perature), and has been denominated the Matsuno-Gill solution,
leading to a net acceleration of the equator at the non linear order.
However, it is not clear whether a linear steady state is relevant in
a case where non–linearities are likely dominant, i.e. hot Jupiters
where the extreme forcing is likely to trigger non–linear effects
over short timescales, and further whether it is appropriate to
choose equal values for both dissipation timescales. Therefore,
we require the time dependent solution of Eqs.(1) to (3) in the
general case, which are expressed in section 2.3.

2.2. Non–Linear Accelerations from the Linear Steady State

Now that we have reviewed the main assumptions and equations
for our basic framework, in this section, we move on to sum-
marising the key results of Showman & Polvani (2011) and Tsai
et al. (2014) A key conclusion of Showman & Polvani (2011)
is that the Matsuno–Gill pattern is a linear steady state, but the
non linear accelerations from this circulation trigger an equato-
rial superrotation. Consider a linear perturbation (a wave or a
steady linear circulation) associated with velocities u′, v′,w′ in
the longitudinal, latitudinal and vertical directions, respectively.
The non linear momentum fluxes per unit mass from this pertur-
bation scale as

φl ∝ u′v′, (15)

φv ∝ u′w′, (16)

where φl is the latitudinal flux of momentum, φv the vertical and
an overline denotes a longitudinal average. When φl is positive,
there is a net transport of eastward momentum to the North, with
a negative value resulting in a net transport to the South. When
φv is positive, there is a net transport of eastward momentum up-
ward, or downwards when it is negative. Therefore, if φl is nega-
tive in the mid latitudes of the Northern hemisphere and positive
in the Southern hemisphere, there is a net meridional conver-
gence of eastward momentum (a similar argument applies in the
vertical coordinate for a 3D systems). For the shallow water β–
plane system used in Showman & Polvani (2011) the vertical
momentum flux is accounted for by the addition of a coupling
term between the deeper (high pressure), quiescent atmosphere
and the dynamically active (lower pressure) atmosphere (R term
in Eqs.(9) and (10) of Showman & Polvani 2011).
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In Figure 1a, we present the temperature (colour scale, K)
and wind vectors (vector arrows) as a function of latitude and
longitude for a typical Matsuno-Gill circulation. This 3D linear
steady state was obtained using ECLIPS3D (see Debras et al.
2019, for details and benchmarking of ECLIPS3D), a linear
solver for waves, instabilities and linear steady states of an at-
mosphere under prescribed heating and drag. The initial state
around which the equations are linearised is an axisymmetric,
hydrostatically balanced state at rest. The bottom pressure is set
to 220 bars and the temperature profile follows that of Iro et al.
(2005), with the polynomial fit in the log of pressure of Heng
et al. (2011), assuming an ideal gas equation of state. Due to
the very high inner boundary pressure, the choice of the inner
boundary condition does not impact our results. The physical pa-
rameters relevant for HD 209458b used in this setup, namely the
radius Rp, the rotation rate Ω, the depth of the atmosphere Rtop,
the surface gravity gp, the inner boundary pressure pmax, the spe-
cific heat capacity cp and the ideal gas constant R are given in Ta-
ble 1. Finally, the heating as well as drag and radiative timescales
were prescribed as in Komacek & Showman (2016) with the ad-
dition of an exponential decay of the heating in the upper, lower
pressure, part of the atmosphere. The exponential damping acts
to mimic the damping of vertical velocities close to the outer
boundary, or ‘sponge layer’ applied in 3D GCMs (see for exam-
ple Mayne et al. 2014). In turn, this damping layer allows the
adoption of a ‘no escape’ or reflective outer boundary condition,
which would otherwise reflect waves back into the numerical
domain. The equilibrium temperature towards which the atmo-
sphere relaxes is a sinusoidal function of latitude and longitude,
and ∆Teq, the equilibrium day side–night side temperature dif-
ference, decreases logarithmically in pressure between 10−3 bar
where ∆Teq = ∆Teq,top (the value at the top of the atmosphere
which is set to 10K in this case) to 10 bars where ∆Teq = 0.
The drag timescale, τdrag, is constant throughout the atmosphere
at 105 s and the radiative timescale, τrad, is a logarithmically in-
creasing function of pressure (see Eq.(7) of Komacek & Show-
man 2016) between 10−2 bar where τrad = τrad,top = 105 s and
10 bar where τrad = 107 s.

As shown in Figure 1a the maximum temperature at the
equator is shifted eastward from the substellar point (the substel-
lar point is set at a longitude of 180 degrees) in our results consis-
tent with observations (Knutson et al. 2007; Zellem et al. 2014).
The meridional circulation exhibits a Rossby wave–type circu-
lation at mid latitudes, with clockwise or anticlockwise rotation
around the pressure maxima, and a Kelvin wave type circula-
tion at the equator, with no meridional velocities. The combina-
tion of both of these circulations brings eastward momentum to
the equator to the East of the substellar point, and advects west-
ward momentum to the mid latitudes to the West of the substel-
lar point. Globally, it is easily shown that φl is indeed negative
in the Northern hemisphere and positive in the Southern hemi-
sphere: there is a net convergence of eastward momentum at the
equator. According to Showman & Polvani (2011), this conver-
gence is associated with divergence of vertical momentum flux,
and equilibration occurs when the vertical and meridional terms
balance.

Tsai et al. (2014) have further extended this understanding
by expanding to include the vertical transport more completely.
Tsai et al. (2014) projected the heating function onto equivalent
height β–plane solutions (see Section 2.1), showing that the ver-
tical behaviour of the waves can be linked to the equilibration of
the jet (a synonym here, and throughout this work for equatorial
superrotation). More precisely, Tsai et al. (2014) show that in
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Fig. 1. Temperature (colourscale in K) and horizontal wind (arrows) as
a function of longitude (x axis) and latitude (y axis) at the 40 mbar pres-
sure level of the linear steady state (denominated Matsuno-Gill circula-
tion) obtained using ECLIPS3D (Debras et al. 2019) with heating func-
tion, drag and radiative timescales following the definitions of Komacek
& Showman (2016). Following the notation of Komacek & Showman
(2016): (a) ∆Teq,top = 100 K, τdrag,top = 105 s and τrad,top = 105 s. The
maximum speed at this pressure range is 10 m.s−1. (b) ∆Teq,top = 100 K,
τdrag,top = 106 s and τrad,top = 104 s. The maximum speed at this pressure
range is 100 m.s−1. Note that the maximum speed has been multiplied
by ten as the drag timescale has been multiplied by ten.

the limit of slow evolution, or strong dissipation, their linear de-
velopment around a steady flow with constant background zonal
velocity reproduces the wave processes occurring in 3D simula-
tions extremely well. Tsai et al. (2014) show that the wave re-
sponse of the atmosphere is shifted from West to East when the
background zonal velocity is increased (their figure 10): this is
interpreted as a convergence towards a single equilibrium state,
where the non linear acceleration from the linear processes can-
cel. Although very detailed and physically relevant, the results of
Tsai et al. (2014) are, as they state, only applicable to the strong
or modest damping scenario, dictated by the fact that the waves
must have the time to reach a stationary state before non lineari-
ties become significant. Throughout this work we define the drag
regime relative to the initial acceleration of the jet: in the ’weak’
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Table 1. Value of the standard parameters for HD 209458b, following Mayne et al. (2014).

Quantity Value
Radius, Rp (m) 9.44 × 107

Rotation rate, Ω (s−1) 2.06 × 10−5

Depth of the atmosphere, Rtop (m) 1.1 × 107

Surface gravity, gp (ms−2) 9.42
Inner boundary pressure, pmax (Pascals, Pa) 220 × 105

Specific heat capacity (constant pressure), cp (Jkg−1K−1) 14 308.4
Ideal gas constant, R (Jkg−1K−1) 4593

drag regime, non-linear terms become non negligible before a
linear steady state (MG) is reached, in the ’modest’ drag regime
the time to reach the MG state is comparable with the time to de-
part from this linear steady state, and in the ‘strong’ drag regime
we can decouple the linear and the non linear evolution of the
planet, as considered by Showman & Polvani (2011). Once an
initial jet has been accelerated, the evolution of the atmosphere
is much slower than its initial acceleration and the results of Tsai
et al. (2014) therefore apply, even in a weak drag regime, ex-
plaining the consistency of their work for the evolution of the jet
towards an equilibrated state.

Komacek & Showman (2016) compare the steady states
from various 3D GCM simulations across a range of τrad and
τdrag values (their figures 4 and 5). The simulations of Komacek
& Showman (2016) extend from low forcing, hence a linear
steady state, to strong forcing, hence a non linear steady state.
Contrary to the conclusions of Showman & Polvani (2011),
Komacek & Showman (2016) also show that when the linear
steady state resembles that of Figure 1a, the associated non lin-
ear steady state is not (or weakly) superrotating. This can be un-
derstood by the fact that τdrag is smaller than the characteristic
timescale of advection by the superrotating jet over the whole
planet, hence the jet is dissipated before it can reach a steady
state. In Figure 1b, we present the results from ECLIPS3D ob-
tained when reproducing a particular setup of Komacek & Show-
man (2016), namely with τdrag = 106 s and τrad,top = 104 s. Ac-
cording to the analysis of Komacek & Showman (2016) the non
linear steady state associated with the linear steady state of Fig-
ure 1b does exhibit strong superrotation, although the tilt of the
wave in Figure 1b would lead to a removal of momentum at the
equator. Komacek & Showman (2016) acknowledge this: "these
phase tilts are the exact opposite of those that are needed to
drive superrotation". For the explanation of Showman & Polvani
(2011) the stationary wave pattern obtained from the heating is
postulated to accelerate superrotation, but Komacek & Show-
man (2016) present results which oppose this scenario: when
the linear steady state accelerates the equator (Figure 1a, with
τdrag = 105 s) the associated non linear steady state is not super-
rotating. However, when the linear steady states takes momen-
tum away from the equator (Figure 1b, with τdrag = 106 s), the
non linear steady state is superrotating. Thus, there is an inherent
discrepancy between Showman & Polvani (2011) and Komacek
& Showman (2016). In order to understand this discrepancy, we
need to go a step beyond the sole consideration of a linear steady
state, and study the evolution of the linear solution with time.
This is the objective of the sections 2.3 and 4.

2.3. Time dependent solutions

Now that we have established the basic mathematical system,
and summarised the current picture of superrotation in hot

Jupiter atmospheres, we move to expressing the time dependent
solution to the forced problem which provides us with the shape
of the atmospheric wave response. Our main assumption is that
the heating function can be decomposed onto the homogeneous
solutions of Eqs.(17) to (19). When τrad = τdrag, this is a direct
consequence of the orthogonality and completeness of the Her-
mite functions, as shown by Matsuno (1966). However, when
τrad , τdrag the eigenvectors are no longer orthogonal, as shown
in Appendix A, and a rigorous proof would be needed to show
that they still form a complete set of solutions1. From a physi-
cal perspective, it is expected that the heating function will trig-
ger linear waves which are solutions of the homogeneous equa-
tion, and such a decomposition of the heating function onto these
waves therefore probably exists, although it is no longer simply
given by a scalar product. Finally, it is worth stating that solving
∂X/∂t = aX + Q is straightforward (except that we don’t know
the eigenvalues and eigenvectors of the homogeneous equation),
however, employing a Green’s function to solve this equation
provides a more physically intuitive result in terms of wave prop-
agation and dissipation.

With the addition of a drag timescale, τdrag, and a radiative
timescale, τrad, Eqs.(7) to (9) can be modified to yield(
iω +

1
τdrag

)
u − yv + ikh = 0, (17)(

iω +
1

τdrag

)
v + yu +

∂h
∂y

= 0, (18)(
iω +

1
τrad

)
h + iku +

∂v
∂y

= 0 . (19)

Indexing again the solutions by n and l as in Matsuno (1966), we
define

Xn,l = (un,l, vn,l, hn,l) = X̃n,l(y)eikx+(iνn,l−σn,l)t (20)

as an eigenvector of Eqs.(17), (18) and (19), with X̃n,l(y) the am-
plitude of the wave, k the horizontal wave number, νn,l its fre-
quency and σn,l its damping (or growing/growth) rate (note that
ωn,l = νn,l + iσn,l). We also define L as the operator of the same
equations, such that LXn,l = 0 for all n and l. The general equa-
tion can then be written as LXF = Q, where Q is the forcing
which, as it is only present in the third individual equation is
given by Q = (0, 0,Q), and XF is the forced, time dependent so-
lution. A homogeneous solution XH can be written in its general
form as

XH =
∑
n,l

αn,lXn,l, (21)

1 Although the eigenvectors remain linearly independent, hence a
Gram-Schmidt method could ensure creation of an orthogonal set of
these eigenvectors.
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where αn,l are scalars.
When τdrag = τrad, νn,l are similar to the ωn,l of Matsuno

(1966) and σn,l = τ−1
drag for all (n, l). When τdrag , τrad, the an-

alytical expressions for νn,l and σn,l are not known a priori. In
order to solve the general equation, we seek the causal Green
function XG that represents the solution at time t due to switch-
ing on the forcing at time t′ only. Therefore, for all t and t′:

LXG(x, y, t, t′) = δ(t − t′)F(x, y, t′), (22)

where δ(t) is the Dirac distribution and F is the heating func-
tion. In the case of simulated hot Jupiter atmospheres, the star
is effectively ‘switched on’ at t = 0 after which the heating is
constant with time (in the linear limit). F can then simply be ex-
pressed as F(x, y, t′) = Θ(t′)Q(x, y), where Θ(t) is the Heavyside
function (null when t < 0 and equal to 1 otherwise). The forced
solution of Eqs.(17) to (19) is simply the integral over t′ of the
causal Green function, hence the sum of the responses of the at-
mosphere excited by a Dirac function of the forcing at time t′:

XF =

∫ ∞

−∞

XG(t − t′)Θ(t′)dt′ =

∫ t

0
XG(t − t′)Θ(t′)dt′, (23)

where the change in the upper limit of integration can be made
due to the fact that the Green function is causal, and is therefore
zero when t − t′ is negative . From the definition of the Green
function (Eq.(22)), for (t − t′) > 0 we have LXG = 0. Hence XG
is a homogeneous solution of Eqs.(17) to (19) when t > t′. It is
then logical to choose for XG:

XG(t, t′) = Θ(t − t′)
∑
n,l

αn,lXn,l(t − t′), (24)

and it is easily verified that

LXG = δ(t − t′)
∑
n,l

αn,lXn,l(t − t′)

+Θ(t − t′)
∂

∂t

∑
n,l

αn,lXn,l(t − t′)

+LhΘ(t − t′)
∑
n,l

αn,lXn,l(t − t′),

= δ(t − t′)
∑
n,l

αn,lXn,l(t − t′) + Θ(t − t′)L
∑
n,l

αn,lXn,l(t − t′),

= δ(t − t′)
∑
n,l

αn,lXn,l(t − t′), (25)

where we have used the fact that the derivative of the Heavyside
function is the Dirac distribution, L = ∂/∂t +Lh where Lh is an
operator acting on the horizontal coordinates only andLXn,l = 0.
Therefore, in order to solve the forced problem we can project
the forcing onto the homogeneous solutions and write for t = t′:∑
n,l

αn,lXn,l(t = t′) =
∑
n,l

αn,lX̃n,l = Q(x, y). (26)

The first equality simply arises from the definition of X̃n,l,
whereas the second uses Eq.(22). Hence if we know the pro-
jection of Q onto the X̃n,l, the αn,l quantities, the final solution
can be obtained. By setting αn,l = qn,l, we recover the results of
the previous section (these are termed bm and bm,n,l in Matsuno
(1966) and Tsai et al. (2014), respectively where the latter is in

3D). The solution to the forced problem is given by injecting the
Green function (Eq.(24)) into Eq.(23):

XF =

∫ ∞

−∞

∑
n,l

qn,lXn,l(t − t′)Θ(t − t′)Θ(t′)dt′,

=
∑
n,l

∫ t

0
qn,lX̃n,l(x, y)e(iνn,l−σn,l)(t−t′)Θ(t′)dt′. (27)

Under this integral form, it is clear that the solution is the con-
tinual excitation (the Θ term) of waves with a characteristic fre-
quency νn,l and time of decay of σ−1

n,l . The amplitude of the ex-
cited waves is proportional to their projection onto the forcing
function Q, as explained by Gill (1980) and Tsai et al. (2014).
Solving this integral yields:

XF =
∑
n,l

qn,lX̃n,l

σn,l − iνn,l

(
1 − e(iνn,l−σn,l)(t)

)
. (28)

In this form we simply recover the results of Matsuno (1966),
and notably their Eq.(34) or our Eq.(14),

XMG =
∑
n,l

qn,lX̃n,l

σn,l − iνn,l
, (29)

where XMG is the Matsuno-Gill solution, hence the steady solu-
tion to the forced problem. The time dependent part of the solu-
tion could have been obtained from a simple first order equation
solution. However, the Green function formalism allows us to
determine that the solution consists of permanently forced waves
that are damped with time, and that the shape of the atmosphere
is given by the interactions between these waves. Notably, with
Eq.(27), we can write

XMG = lim
t→∞

∑
n,l

∫ t

0
qn,lX̃n,le(iνn,l−σn,l)(t−t′)Θ(t′)dt′, (30)

the form of which confirms the interpretation of the station-
ary solution as an infinite interaction of waves. Additionally, it
shows that for a given heating function, changing the value of
τdrag (but keeping τrad = τdrag), hence not altering the X̃n,l and
νn,l but only σn,l = τ−1

drag, will change the linear steady solution.
This is as the excited waves will not propagate to the same length
before being damped. This was first realised by Wu et al. (2001),
where they show that the zonal wave decay length is of the order
of

√
τ−1

radτ
−1
drag for arbitrary τrad and τdrag.

From Eq.(27), we see that the linear solution is controlled by
three main parameters: the shape of the forcing function (qn,l),
the global behaviour of the waves (horizontal shape of X̃n,l and
νn,l) and the dissipation of the waves (σn,l). Although Eq.(27)
provides the form of the solution to the time dependent problem,
the three main parameters we have detailed remain unknown.
Therefore, we move to quantifying the sensitivity of the solution
to the forcing function, hence the influence of the qn,l in the next
section.

3. Insensitivity of Matsuno-Gill to the differential
heating

The interpretation of Showman & Polvani (2011) relies on a sim-
plified treatment of the forcing, the impact of which we must first
assess before discussing the impact of the linear evolution of the
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atmosphere. Firstly, in order to derive analytical results, Show-
man & Polvani (2011) impose an antisymmetric (sinusoidal)
heating where the night side of the planet is cooled as much
as the day side is heated. In this case, the linear steady solu-
tion gives rise to the chevron shaped pattern they denominate the
‘Matsuno-Gill’ circulation. However, the actual structure of the
heating is not just a sinusoidal function. Moreover, from Mayne
et al. (2017) and Amundsen et al. (2016) we know that there are
qualitative differences between the steady state of GCM simula-
tions of hot Jupiters calculated using either a Newtonian heating
or with a more sophisticated radiative transfer scheme. In that
regard, the first intuitive idea to test is whether the MG pattern
is robust when the heating function is changed. With the addi-
tion of the vertical dimension, Tsai et al. (2014) have shown that
the linear solution strongly resembles the MG circulation at low
pressures in the atmosphere. It is not clear whether this holds
with realistic, three dimensional heating functions.

From Eq.(14) or (30), as Xn,l(x, y) = X̃n,l(y) exp(ikx), we
know that the projection of the heating function onto different
wavenumbers, k, can alter the resulting Matsuno-Gill circulation
from that obtained at wavenumber one. To verify this point, us-
ing ECLIPS3D we solve for linear steady circulations across a
range of prescribed heating rates, adopting the drag and radiative
timescales of Komacek & Showman (2016), as used previously
for the data presented in Figure 1a. We use three forms of heat-
ing, the first two modified from that used for Figure 1a, and a
third one, inspired from 3D GCM simulations:

– The same day-side forcing as Figure 1a, but no night-side
cooling.

– The same forcing as Figure 1a but with the night-side cooling
enhanced by a factor of 3.

– A heating profile matching that obtained from 3D GCM sim-
ulations (taken from Amundsen et al. 2016), including net
day side heating and night side cooling.

The first two cases allow us to test the robustness of the pat-
tern under extreme situations, with the third mimicking the GCM
simulations. ECLIPS3D calculates the linear steady states by in-
verting the linear matrix obtained with the full 3D equations (see
description in Debras et al. 2019). The outer boundary condition
is a ‘no escape’ condition (zero vertical velocity w), and we have
applied an exponential decay of the forcing in the high atmo-
sphere (low pressure) to mimic the damping of vertical veloci-
ties, or sponge layer, employed in the UM and other GCMs. For
the inner boundary, we adopt a solid boundary condition for the
vertical velocity (w = 0), and a free slip (no vertical derivatives
of the horizontal velocities, u and v) or no slip (no horizontal
velocities) condition on u and v give qualitatively similar results
because of the very high inner pressure. These assumptions are
obviously simplifications of the real physical situation, but we
have assessed their impact by changing the range of pressures
at the inner and outer boundaries, and find no significant change
in the qualitative results. The physical parameters adopted for
HD 209458b are the same as in Mayne et al. (2017) and given
earlier in Table 1.

Figure 2 shows the perturbed pressure (steady pressure mi-
nus initial pressure, colorscale) and winds (arrows) as a function
of longitude and latitude of the MG solutions for the three dif-
ferent heating profiles described previously, at a height where
the initial pressure is 50 mbar. Figure 2 shows that the shape
of the linear steady circulation does not qualitatively depend on
the forcing: we always recover an eastward shift of the hot spot,
associated with a tilt of the eddy patterns leading to a net accel-
eration of the equator for the non linear order. As long as there

is a differential heating between the day and the night side, the
linear steady solution of the atmosphere exhibits the "chevron-
shaped" pattern of the MG circulation (we have verified that a
constant heating across the whole planet or just a cooling on the
night side does not lead to solutions of a similar form to the MG
solutions). There is however a change in the quantitative val-
ues, without affecting the qualitative aspects of the non linear
momentum transfer (see Section 5). Therefore, relaxing the ap-
proximation of a wavenumber one (e.g., day–night antisymmet-
ric forcing) heating function has no influence on the non linear
acceleration around the linear steady state: the projection onto
different zonal wavenumbers changes the zonal amplitude of the
MG circulation, but not its qualitative shape. We only presented
results with a characteristic drag and radiative timescale of 105s,
but we have verified that changing these values affects the shape
of the solutions in all cases in a similar way.

Globally, even for simulations with a proper treatment of the
radiative transfer, as long as the planet is tidally locked we expect
the linear steady circulation to be MG-like. In the paradigm pro-
posed by Showman & Polvani (2011) and Tsai et al. (2014), the
propagation of planetary waves impose this global MG circula-
tion, exhibiting no superrotation, with the acceleration on to su-
perrotation being due to eddy mean flow interactions around this
primordial state. Therefore, the time to reach the linear steady
state, which is by no means a non linear steady state, must be
small relatively to other dynamical times in the system. In the
case where the drag and radiative timescales are equal, this led
Tsai et al. (2014) to conclude that their work could not apply
to long diffusion timescales. We now seek to assess if similar
conclusions can be made in cases where the drag and radia-
tive timescales differ, in order to determine how the atmosphere
reacts at first order. To develop this argument, we analytically
restrict ourselves to the quasi geostrophic set of equations (2D
Cartesian, shallow water β–plane), as detailed in section 2.1.

4. Wave propagation and dissipation

We have established, using a Green’s function, that the linear
solution to the 2D shallow water, β–plane equations, can be ex-
pressed as the continual excitation of waves with a characteristic
frequency and decay timescale (Eq.(27) Section 2.3). The decay
timescales themselves are crucial as they can be used to deter-
mine the qualitative form of the linear steady state itself, and
provide insight into the response of the atmosphere over short
timescales. In this section we focus on the mathematical deriva-
tion of the characteristic decay timescales reaching an expres-
sion (Section 4.1.1), which we then solve numerically for dif-
ferent types of atmospheric waves (gravity, Rossby and Kelvin
waves). A short summary is then provided in Section 4.1.5. Fol-
lowing this, we extend our arguments to 3D in Section 4.2. The
entirety of this section is focused on the mathematical nature
of the supported waves, with a physical interpretation provided
later in Section 5.

4.1. Characteristics of waves in 2D

4.1.1. Decay time of damped waves

The first task is to derive an equation for the decay timescale,
or growth rate, for a general damped wave in our framework. If
τdrag = τrad, defining iω′ = iω + 1/τdrag can be used to transform
Eqs.(17) to (19) into Eqs.(7) to (9). The eigenvalues must then
be ω′n,l = ωn,l, obtained in the case with no dissipation, which
means that the real part of the eigenvalue, the frequency, is un-
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Fig. 2. Perturbed pressure (colorscale in Pa) and winds (arrows) as a function of longitude and latitude with different heating functions, with drag
and radiative timescales defined as in Komacek & Showman (2016) with non-dimensional values of 1 (almost half an Earth day). Initial pressure
at this height is 50mbar and the forcing is ∆Teq,top = 50K in the top left figure. (a): Heating as in Komacek & Showman (2016) (b): Same as
Komacek & Showman (2016) but with a cooling at the night side 3 times more efficient than the heating on the day side. (c): Same as Komacek &
Showman (2016) with no cooling at the night side. (d): Heating rate extracted from the full radiative transfer calculations of the GCM (divided by
a thousand to obtain comparable values).

altered from the original equations, but the imaginary part of ω
becomes,

=(ω) =
1

τdrag
. (31)

Therefore one can express e.g., un,l as:

un,l = ũn,le−t/τdrag ei(νn,lt+kx). (32)

This shows that all modes decay over a characteristic timescale,
namely, the drag (or radiative) timescale. For the case where
τrad = τdrag the time to converge to the Matsuno-Gill circula-
tion is the decay timescale, as one would naively expect, and all
waves have the same exponential decay in time.

If τdrag , τrad, Eq.(10) must be modified to obtain:

∂2v
∂y2 −

(
(iω + τ−1

drag)(iω + τ−1
rad) + k2

+y2 iω + τ−1
rad

iω + τ−1
drag

−
ik

iω + τ−1
drag

)
v = 0 . (33)

It is easy to verify that setting τ−1
drag = τ−1

rad = 0 gives back Eq.(10).

To go one step further, we define a complex number c such
that:

c4 =
iω + τ−1

rad

iω + τ−1
drag

, (34)

and choose for c the only root with positive real and imaginary
part. This definition ensures that the real part of c2 is always
positive, which allows for the solutions to decay at infinity, see
Appendix A. We then choose as a variable z = cy (the cases
c = 0 and c = ∞ are of no physical interest). Using this new
variable, ∂2v/∂y2 = c2∂2v/∂z2, Eq.(33) simplifies to

c2 ∂
2v
∂z2 −

(
(iω + τ−1

drag)(iω + τ−1
rad) + k2 + y2c4 −

ik
iω + τ−1

drag

)
v = 0 .

(35)

Dividing this equation by c2 (and recalling the definition of z,
z = cy), we obtain

∂2v
∂z2 −

(iω + τ−1
drag)(iω + τ−1

rad) + k2 − ik/(iω + τ−1
drag)

c2 v − z2v = 0.

(36)
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Defining the multiplier of v in the second term as m, the equation
can be expressed as,

∂2v
∂z2 + (m − z2)v = 0 . (37)

The major difference with the Matsuno case, Eq.(10) is that now
z ∈ C, and so the boundary conditions are altered. As |z| → ∞
when y→ ±∞, we have to solve this equation with the following
boundary condition:

v→ 0 when |z| → ∞ . (38)

As in the case where m is real, one could show (see, for ex-
ample, Abramowitz & Stegun 1965) that the only solutions are
the parabolic cylinder functions, Eq.(12): Hn(cy)e−c2y2/2 where
n ∈ N, hence the need for<(c2) > 0 so that the solutions decay
when y→ ±∞, and provided that:

−(iω + τ−1
drag)(iω + τ−1

rad) − k2 + ik/(iω + τ−1
drag)

c2 = 2n + 1, (39)

Defining x = iω + τ−1
drag and γ = τ−1

rad − τ
−1
drag, followed by taking

the square of Eq.(39) in order to obtain c4 yields,

x4(x + γ)2 + 2k2x3(x + γ) − 2ikx2(x + γ)

−(2n + 1)2x(x + γ) + k4x2 − 2ik3x − k2 = 0 . (40)

Eq.(40) has already been obtained by Heng & Workman (2014)
(their Eq.(121)), in order to derive steady state solutions as per-
formed in Wu et al. (2001) and Showman & Polvani (2011).
Eq.(40) is a polynomial of order six, but a thorough study of
Eq.(39) reported in Appendix B shows that only three different
waves propagate, and two for n=0, as in Matsuno (1966) .

The horizontal shape of the solutions to Eqs.(17) to (19) in
the general case are given by Eq.(A.7), but we would also re-
quire the solutions of Eq.(40) to obtain a fully analytic expres-
sion for the waves. Therefore, we have solved Eqs.(17) to (19)
numerically over an extensive range of n, k, τdrag and τrad values
(we have verified that our numerical solutions recover the limits
τ−1

drag = τ−1
rad = 0 and τ−1

drag = τ−1
rad). First, as expected no modes can

exponentially grow given a background state at rest. The cases
of k ∼ 1 and n = 1, 3, 5 and 7 are the most important for hot
Jupiters, as the heating function is dominated by wavenumber
1, i.e. a day and night side (non–dimensional value around 0.7,
see Section 5). Here the n number represents the order of the
Hermite polynomial, hence the number of zero nodes in latitude
(note that as c2 can be complex, the number of zeros in lati-
tude is no more solely defined by the Hermite polynomials as
in the c = 1 case). If the heating function is a decaying expo-
nential with latitude, as chosen by Matsuno (1966); Showman &
Polvani (2011); Tsai et al. (2014), then the projection of Q on
to the parabolic cylinder function stops at the third order (this is
not necessarily true when τdrag , τrad but we don’t expect large
amplitude in the n > 3 waves, as the forcing exhibits no zeros in
latitude).

Using our numerical solutions we explore the behaviour of
gravity (Section 4.1.2), Rossby (Section 4.1.3) and Kelvin waves
(Section 4.1.4) before summarising our results (Section 4.1.5).
For all cases the frequency of the waves remains within an order
of magnitude of the free wave frequency (when τdrag = τrad = 0).
Hence the major changes, between cases, are obtained for the
decay rate. We have also implemented the 2D–shallow water
equations in ECLIPS3D (detailed in Debras et al. 2019) to ver-
ify our numerical results discussed in this section. For all cases

for matching parameters (characteristic values, τrad, τdrag), the
agreement between ECLIPS3D and the results discussed here
(obtained using the Mathematica software) for both the decay
timescales or growth rates and frequency of waves is excellent.
Furthermore, inserting the numerical values obtained here in
Eq.(A.7) recovers the exact modes as obtained using ECLIPS3D.

4.1.2. Gravity waves

In this work we define "gravity waves" as the solutions to
Eqs.(17) to (19) which tend to the standard definition of a gravity
wave in the limit τdrag → τrad (we have verified that the identifi-
cation is unchanged for τrad → τdrag). As there are only three so-
lutions to these equations, see e.g., Matsuno (1966), the Rossby
wave is therefore the last mode.

Our numerical results gave a characteristic time of decay
for gravity waves of ∼ τdrag, when τdrag ∼ τrad, as expected.
For cases where the drag is dominant over the radiative forc-
ing, τdrag � τrad, the decay timescale obtained numerically is
∼ τdrag i.e., the drag controls the timescale of the convergence
of the atmosphere. Physically, this is expected as drag will pre-
vent the wave from propagating and damp the perturbed velocity
efficiently, preventing the temperature and pressure to depart sig-
nificantly from the forced equilibrium profile.

However, when the radiative forcing is dominant over the
drag, τdrag � τrad, we find two cases. Firstly, when τrad � 1 the
numerically obtained decay rate for the gravity waves (σg1) is
given by

σg1 ≈ τ
−1
drag + τ1/(n+2)

rad . (41)

For this case, if τrad → 0, σ−1
g1 (the decay timescale) is given

by the drag timescale, as for the case of dominant drag. However,
if τrad is larger the behaviour is more complex and includes a de-
pendence on the order of the Hermite polynomial n, although
this still results in the decay timescale being the same order
of magnitude as the drag timescale. We interpret it as the fact
that, although the temperature and pressure perturbation will be
dictated by the forcing, the time to damp the wave is still gov-
erned by the time for the velocities to be damped, hence the drag
timescale.

Secondly, for the case where τrad � 1 the numerically ob-
tained limit for the decay rate (σg2) is given by

σg2 ≈
τ−1

rad

3
. (42)

In this case, the radiative timescale is long enough to be imposed
as the characteristic time of decay even for the velocities, and the
decay of the wave is only controlled by this timescale.

4.1.3. Rossby waves

The behaviour of the Rossby wave decay timescale is more com-
plex than that of gravity waves. When |τ−1

drag − τ
−1
rad| & 0.5, for all

individual values of τ−1
drag or τ−1

rad, the absolute value of the imag-
inary part of c2 is much larger than that of the real component.
This means that the Rossby wave modes oscillate in the y direc-
tion several times before being damped, in these conditions. Ad-
ditionally, for increasing values of |τ−1

drag − τ
−1
rad|, the amplitude at

the equator becomes negligible, and the mode’s peak amplitude
moves to higher latitudes, where the equatorial β–plane approx-
imation begins to break down. Therefore, our numerical results
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show that the simple shallow–water, equatorial β–plane frame-
work adopted in this work is not usefully applicable to the case
of Rossby waves where |τ−1

drag−τ
−1
rad| & 0.5. We will therefore rely

on numerical results of section 4.2 for this region of the parame-
ter space. However, for |τ−1

drag − τ
−1
rad| . 0.5 (which is the case for

all τ−1
drag, τ

−1
rad < 0.5), the decay rate for Rossby waves (σR) we

have derived numerically can then be approximated by,

σR ≈
1
2

(
τ−1

rad + τ−1
drag

)
. (43)

Therefore, for long radiative and drag timescales, Rossby
waves are equally sensitive to the damping of velocities and tem-
perature. Such a result is expected from the conservation of po-
tential vorticity, which gives rise to Rossby waves, and is defined
in the shallow water system as (ξ + f )/h where ξ = ∇ ∧ u is the
vorticity and f = 2Ω cos φ the Coriolis parameter. When nei-
ther ξ and h are strongly damped, we might therefore expect a
combination of the drag and radiative damping to return to equi-
librium. Comparing the decay timescale for Rossby waves with
that obtained for gravity waves in Section 4.1.2 shows that the
decay rates differ between these two cases.

4.1.4. Kelvin waves

Kelvin waves are a particular solution of the homogeneous
Eqs.(17) to (19), as first pointed out by Matsuno (1966), where
the meridional velocity is zero, and can be characterised analyt-
ically. Combining Eqs.(17) and (19) with v = 0 yields,

∂u
∂y

=
ik

iω + 1/τdrag
yu, (44)

and hence

u = Aexp
(

ik
iω + 1/τdrag

y2

2

)
, (45)

where A is a constant. If the boundary condition u = 0 for
y → ±∞ is to be satisfied, the factor of y2/2 must have a nega-
tive real component. Additionally, in order for u and h not to be
identically zero, ω must be a root of a second order polynomial
given by

ω2 − iω
(

1
τrad

+
1

τdrag

)
− k2 −

1
τradτdrag

= 0 , (46)

that is,

ω =
1
2

i
(

1
τrad

+
1

τdrag

)
±

√
4k2 −

(
1
τrad
−

1
τdrag

)2
 , (47)

where the term under the square root can be negative, and there-
fore provide an imaginary component. Further algebraic manip-
ulation then yields,

ik

iω +
1

τdrag

=
2ik(

1
τdrag

−
1
τrad

)
± i

√
4k2 −

(
1
τrad
−

1
τdrag

)2
. (48)

In order to satisfy the boundary conditions the term under the
square root in this equation must be positive, or the result is a
pure imaginary number. In other words, Kelvin waves are able
to propagate only when the condition,

4k2 >

(
1
τrad
−

1
τdrag

)2

, (49)

is met. Additionally, this simple estimation of the regimes where
Kelvin waves can be supported in the atmosphere may well be an
over estimate for the 3D, spherical coordinate case as the charac-
teristic scale of the damping of the Kelvin wave must be smaller
than the scale of the planet’s atmosphere itself. The real part of
ik/(iω + τdrag

−1) must therefore be large enough (and negative).
Finally, when Kelvin waves propagate their characteristic decay
rate (σK) is given by,

σK =
1
2

(
1
τrad

+
1

τdrag

)
. (50)

This result is similar to the decay timescale for Rossby waves
(compare Eqs.(43) and (50)). τdrag and τrad therefore have a sym-
metric contribution for Kelvin waves, as expected when consid-
ering Eqs.(17) and (19) for v = 0: they have a symmetric effect
on u and h.

4.1.5. Decay Timescale Summary

We have now obtained expressions for the asymptotic values of
the decay timescales for damped waves under the 2D shallow–
water, β–plane framework (see Section 2.1). In particular, for the
case of Kelvin waves we obtained an analytical expression for
the decay rate, Eq.(50). We have also shown that for the regime
where the analytical calculations are valid, Rossby waves exhibit
the same decay rate as found for Kelvin waves. For the more
general case, aside from considerations of whether the waves
can be supported by the atmosphere we have two limits:

1. For τdrag ∼ τrad and τdrag � τrad, simply, σR ∼ σK ∼ σg ∼

τ−1
drag within a factor of ∼ 2.

2. For τdrag � τrad, Kelvin and Rossby waves seem unaltered
but for the gravity waves the decay timescale becomes:

– For τrad � 1: σg ∼ τ
−1
drag + τ1/(n+2)

rad

– For τrad � 1: σg ∼ τ
−1
rad/3

As our results have been derived for the 2D shallow–water,
β–plane system, and for the case of Rossby waves in particular,
the behaviour of the waves may not be captured correctly. There-
fore, we next move to verifying and extending our approach into
3D using ECLIPS3D.

4.2. Extension to 3D with ECLIPS3D

So far we have determined the characteristic frequencies and de-
cay timescales for various atmospheric waves in our 2D frame-
work, introduced in Section 2.1. In this section we extend our
analysis to full 3D spherical coordinates using ECLIPS3D. In
3D, spherical coordinates, the dependency of the waves on the
stratification and the value of the drag and radiative timescales
is difficult to predict theoretically. Therefore, we approach the
problem numerically using ECLIPS3D, studying the modes
which propagate in a stratified atmosphere at rest, as is used for
the initial condition when simulating hot Jupiter atmospheres.
The background temperature–pressure profile is set to that of
Iro et al. (2005), employing the polynomial fit of Heng et al.
(2011). The pressure at the bottom of the atmosphere is set to
220 bars, capturing the dynamically active region of the atmo-
sphere, driven by the forcing. As before, we have varied the in-
ner boundary condition to test its impact on our results, and find
our conclusions to be robust to this choice. The selection of the
modes of interest is performed by first excluding modes with un-
realistic amplitudes at the pole or boundary, and then selecting
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modes with only one oscillation in longitude i.e. wavenumber 1,
matching the heating function. Additionally, we restrict to modes
with at most two nodes in the latitude direction which are the
dominant modes (see discussion previously in this section). This
selection process is also described in Debras et al. (2019).

For the first study we have verified that all modes supported
when τdrag = τrad = 106 s is adopted throughout the atmosphere
are similar in form to when τdrag = τrad = 0 s but exhibit a charac-
teristic decay frequency of 10−6 s−1. Although Rossby and grav-
ity waves are supported with characteristic heights of order the
height of the atmosphere itself, Kelvin waves seem only to be
supported at the pressure scale height, or smaller.

We have subsequently applied ECLIPS3D with τrad pre-
scribed as a function of pressure following Iro et al. (2005), and
τdrag set as a constant at 106 s. For this setup, we recover the
usual (see e.g., Thuburn et al. 2002) Rossby and gravity modes
over different vertical wavelengths. Therefore, although our 2D
analysis breaks for Rossby modes with large τdrag (see Section
4.1.3), we recover them in the full 3D spherical coordinate treat-
ment using ECLIPS3D, with their decay rate always comparable
to the reciprocal of the drag timescale. However, in this setup,
with a pressure dependent radiative timescale, we do not find
Kelvin modes with atmospheric-scale characteristic heights (we
use 20 points in the z coordinates, therefore we are unable to re-
solve modes with H . 5 × 104 m). However, we obtain Kelvin
modes with smaller characteristic heights in the deepest, highest
pressure, region of the atmosphere where the radiative timescale
is long, in agreement with our previous estimations (see Sec-
tion 4.1.4, Eq.(49)). For this setup we also obtain mixed Kelvin–
gravity modes, concentrated at the equator, as well as mixed
Rossby–gravity modes, with the Rossby component dominating
in the high latitudes and gravity component component near the
equator. In the case of the pure gravity modes the resulting fre-
quencies and decay rates, from ECLIPS3D in 3D spherical co-
ordinates, are in very good agreement with the 2D estimations
(Section 4.1.2). However, for Kelvin modes although the decay
rates obtained from ECLIPS3D are in good agreement with our
2D analytical expressions (Section 4.1.4), the obtained frequen-
cies are a a little larger than our analytical analysis would sug-
gest. Finally, for pure Rossby modes, for the range where our 2D
analysis is valid, the decay timescales are again in good agree-
ment between our 2D estimations (Section 4.1.3) and the numer-
ical results in 3D, but similarly to the Kelvin modes the frequen-
cies are slightly underestimated.

From our ECLIPS3D outputs we have calculated the value of
√
σ2 + ν2 for all modes supported in the simulated atmosphere ,

as the amplitude of a given mode in the linear steady state of
the atmosphere is inversely proportional to

√
σ2 + ν2 (Eq.(28)).

These results show that the value of
√
σ2 + ν2 is an order of

magnitude smaller for Rossby modes, compared with Kelvin or
gravity modes. The fact that the Rossby waves are dominant for
the linear steady state in the limit of large drag timescale from
our numerical treatment is consistent with our previous estima-
tions. As discussed in Section 4.1.3 the frequencies of the modes
are not significantly altered by the drag timescale, and Matsuno
(1966) has shown that Rossby waves have frequencies ∼ 10−100
times smaller than gravity and Kelvin waves. Additionally, when
τdrag is large but τrad is modest, the decay rate of Kelvin waves
is controlled by the radiative timescale, whereas the decay rate
of the gravity waves and Rossby waves is conversely controlled
by the drag timescale. Therefore, the value of

√
σ2 + ν2 will be

bigger for Kelvin waves, over that obtained for Rossby and grav-
ity waves, for both of which this quantity will be of order the

frequency, which is ten times smaller for Rossby waves com-
pared to gravity waves. This demonstrates that the Rossby waves
will propagate over greater timescales and lengths, and dissipate
globally more energy in the linear steady state (see Eq.(27)).
The influence of the Rossby waves in the steady linear circu-
lation regime will be dominant over Kelvin and gravity modes,
explaining the qualitative shape of Figure 1b.

As a summary, Figure 3, shows the decay timescales for
gravity, Rossby and Kelvin waves, obtained from Eqs.(40), (50)
and the numerical work of this section, as a function of the drag
timescale for τrad = 0.3 (in dimensional units, a few 104 s), a
characteristic value in the superrotating regions of HD 209458b,
or as a function of the radiative timescale for τdrag = 20 (about
106 s), a value which allows for superrotation in the non linear
limit. We recover the fact that Kelvin waves are more damped
than other waves for the timescales used in this section, thought
to be representative of hot Jupiter atmospheres, but not for all
timescales (notably when τdrag = τrad). This highlights the need
to constrain the timescales to understand the spin up of su-
perrotation, and to know the wave behaviour across different
timescales.

Figure 4 shows the pressure perturbations (colour scale, total
pressure minus initial pressure) and horizontal winds (vectors)
as a function of longitude and latitude, for four Rossby modes.
Two of the modes in Figure 4 are from ELCIPS3D, 3D spherial
coordinate calcuations, and two from the analytical studies (i.e.
derived using equations in Appendix A), shown as the left and
right columns, respectively. The locations in longitude are arbi-
trary as the initial state is axisymmetric and at rest. The Rossby
modes shown in Figure 4 from ELCIPS3D have been chosen
such that the maximum amplitude was present in the upper, low
pressure, part of the atmosphere, where the radiation timescale is
shorter than that of the drag (top panel), in one case, and for the
other case where the amplitude was maximum in the deeper, high
pressure, regions where drag is dominant (bottom panel). Figure
4 shows that the ECLIPS3D results and those from our 2D an-
alytical treatments are in good agreement. Specifically, the ‘tilt’
of the modes in the latitude–longitude plane, and the location
of the maximum perturbation in pressure are broadly consistent
between the analytical 2D and numerical 3D results. This agree-
ment is comforting given that one case is a simplification of an
atmosphere on a 2D shallow water β–plane and the other one a
restriction onto one height of a fully 3D, spherical mode. There
are however discrepancies, notably in the wind profile close to
the equator.

It is, however, difficult to conclude on the behaviour of the
linear solutions solely from the results of the ECLIPS3D cal-
culations in 3D, as we also require the projection of the heat-
ing function onto the waves. However, clearly we recover tilted
Rossby waves, and an absence of Kelvin waves in the upper part
of the atmosphere where superrotation develops (or they must
have a small characteristic height). This is in contradiction with
Showman & Polvani (2011), where they link the acceleration
of superrotation to the interaction between a standing equatorial
Kelvin wave and mid latitude Rossby wave, but in agreement
with our analytical estimations for the domain of existence of
Kelvin waves. As already stated in this paper, this does not refute
the theories of Showman & Polvani (2011) and Tsai et al. (2014)
regarding the equilibration of superrotation, but shows that the
spin-up of an initial jet is not due to a linear, chevron-shaped
steady state and time dependent linear considerations must be
taken into account. Globally, our 2D semi-analytical arguments
seem to be a very good approximation of the 3D linear evolution
of the atmosphere of hot Jupiters, and we devote the next sec-
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Fig. 3. Typical decay rate σ for gravity, Rossby and Kelvin waves ob-
tained from Eqs.(40), (50) and the numerical work of Section 4, as a
function of (top) τdrag for τrad = 0.3 and (bottom) τrad for τdrag = 20.
The peculiar shape of the gravity and Rossby waves decay rates comes
from the discrepancy between the numerical results and the analytical
solution for low τrad and large τdrag, as the numerical results yield lower
value for σg and the analytical study breaks for Rossby waves (see text).
For the Rossby waves, the low τdrag limit has not been studied here as it
is irrelevant for superrotation.

tion to an application of these estimations to provide a physical
understanding to the acceleration of superrotation.

5. Transition to superrotation

In Section 3, we have shown that the linear steady state of
our atmosphere was not significantly altered when moving to
a more realistic heating profile taken from a 3D GCM simula-
tion. Therefore, to gain further insight into the acceleration of
the superrotation we turn to the time–dependent, linear effects.
This led us to develop expressions for the time–dependent linear
solution to the problem in Section 4. In this current section we
use these solutions to understand the transition to superrotation
in simulated hot Jupiter atmospheres. We first assess the validity
of our own results by comparing them with the simulations of
Komacek & Showman (2016) in Section 5.1. This is followed,
in Section 5.2, by an order of magnitude analysis, which allows
us to conclude that we can not explain the acceleration to super-
rotation under the simplifications employed for the linear steady

state (although such simplifications are well suited for studying
the equilibration of the superrotation, see Tsai et al. 2014, for
example). Finally, we test our interpretation against the results
of 3D GCM simulations in Section 5.3, revealing that vertical
accelerations are vital to the process.

5.1. Qualitative structure of linear steady state

Before discussing the transition to superrotation in the non linear
limit, we first apply our understanding from Section 4 to inter-
pret the form of the various linear steady states presented in Ko-
macek & Showman (2016), their Figure 5. As shown by Wu et al.
(2001) the zonal damping length is proportional to

√
τ−1

dragτ
−1
rad.

Therefore, if the two timescales (drag and radiative) are small, or
one of them is vanishingly small, the zonal propagation of waves
will be extremely limited in longitude. This is clearly seen in Ko-
macek & Showman (2016), as when one or two of the timescales
are short the temperature gradient is huge between the day and
night side, and the zonal flows restricted largely to the day side.
Essentially, in this case the waves excited on the day side, have
been damped before reaching the night side and therefore can
not lead to efficient wind generation and heat redistribution (in
the linear limit). This is also discussed in Komacek & Showman
(2016).

Due to the strong asymmetric, steady forcing in the atmo-
spheres of hot Jupiters, the dominant wavenumber k ensures one
oscillation around the planet, i.e. 2πrk = 2π. Typical conditions
for hot Jupiter atmospheres yield gH ∼ 4×106 m2s−2 (Showman
& Polvani 2011) and therefore L ∼ 7×107 m and T ∼ 3.5×104 s
(see Eqs.(6), (4)).

Supposing that there is a dominant timescale (i.e. radiative or
drag) denoted simply as τ in order for Kelvin waves to propagate
we require from the dimensional form of Eq.(49) :

τ &
r

2
√

gH
∼ 2.5 × 104 s . (51)

Therefore, if the radiative or drag timescale exceeds 2.5 × 104 s,
Kelvin waves can only propagate when both timescales are al-
most equal (with a difference less than a few 104 s). However, if
both these timescales are . 2.5 × 104s, the dissipation time for
Kelvin waves will be very short. Assuming a simple character-
istic speed of waves to be

√
gH, which in our case is roughly

2 × 103m.s−1, the time for a wave to travel around the whole
planet is ∼ 2×105s. Therefore, for drag or radiative timescales of
. 2.5×104s, even in the cases where Kelvin waves exist they can
not propagate around the whole planet and, thereby, generate the
stationary chevron shaped MG pattern of Showman & Polvani
(2011). The chevron shaped pattern of the linear steady state can
therefore only exist when both timescales are & 105 s and com-
parable in value. This is seen in Figure 5 of Komacek & Show-
man (2016), where this pattern is clearly not ubiquitous, and this
restricts strongly the cases where the explanation of Showman
& Polvani (2011) is applicable. In other words, acceleration of
superrotation in hot Jupiters from the MG or chevron shaped,
tilted linear steady state is only possible over a restricted param-
eter space, which is therefore not likely to provide an explanation
for all exoplanet cases.

Additionally, Eq.(51) shows that for a given τ but for a vary-
ing H, there is a minimum height for the propagation of Kelvin
waves. As shown by Wu et al. (2000) and later by Tsai et al.
(2014), the three dimensional structure of the propagating waves
can be decomposed onto waves in a shallow water system but
with differing equivalent depths. The modes are solutions to
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Fig. 4. Pressure perturbations (colorscale) and winds (arrows) as a function of longitude and latitude for four Rossby waves for an axisymmetric
hot Jupiter atmosphere at rest. The values of the drag and radiative timescales are described in Section 4.2. The left column shows the results
from ECLIPS3D 3D spherical coordinate calculations and the right column for the analytical results to the equation developed in appendix A.
For the top row, the drag is dominant, and the bottom row radiation is dominant. Note: as the initial state is at rest and axisymmetric, there is an
uncontrolled phase in longitude, meaning the longitudinal location is abitrary.

the homogeneous equations but with a non–dimensional height
which varies between modes. Tsai et al. (2014) also show, in
their Figure 2 that the projection of the heating function of the
vertical modes has a high amplitude for modes with equivalent
height between 5HP and 0.2HP, where HP is the pressure scale
height, roughly of the order of 4 × 105m in hot Jupiter atmo-
spheres. Therefore, adopting these limits we have H = 5HP ∼

2 × 106m and H = 0.2HP ∼ 8 × 104m, and obtain

104s < τ < 6 × 104s . (52)

Therefore, in our case, this implies that if τ < 104s, Kelvin waves
are unable to propagate with characteristic height less than 5HP:
the linear steady state will have an almost null projection onto
Kelvin waves. However, if τ > 6 × 104s, the majority of the
Kelvin waves excited by the forcing can propagate (we recall
that if both timescale are equal all the wave can propagate, as
in the neutral case, but we expect the radiative timescale to be
at least an order of magnitude smaller in superrotating regions).
Additionally, as introduced in Section 4, our estimates for the

regimes where Kelvin waves are supported by the atmosphere is
likely to be wider than the real situation, meaning that the criteria
for Kelvin wave propagation are also likely to be stricter.

The behaviour outlined in this section is readily apparent in
Figure 5 of Komacek & Showman (2016). In the limit where
the drag is strong, the waves are damped efficiently, the thermal
structure strongly resembles the thermal forcing, and there is no
planetary Kelvin wave structure evident at the equator. However,
in the case of weak drag (τdrag > 105 s) the Kelvin wave com-
ponent is visible in the temperature structure only when the ra-
diative timescale is comparable (i.e. > a few 104 s, in other cases
the temperature is almost uniform at the equator). Finally, in the
limit of short radiative timescale the Kelvin waves do not prop-
agate, the dynamical shape of the atmosphere is dominated by
other components and the linear steady state strongly resembles
Figure 1b. Interestingly, it appears that the cases that superrotate
in the non linear limit all have a negligible Kelvin wave contribu-
tion in their linear steady state, in other words, either the equator
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is not dominated by Kelvin–type circulation or the high latitudes
are dominant.

To conclude this section we detail further the case τdrag =

105s and τrad,top = 104s. Following Eq.(9) of Komacek & Show-
man (2016), this choice for τrad,top implies a radiative timescale
of 8 × 104s at P = 80mbar (the isobaric surface presented in
their Figure 5) and the drag timescale 105s. Using (Eq.(49)),
Kelvin waves are able to propagate in this scenario. Addition-
ally, the difference between the drag and radiative timescales en-
ables us to properly consider the behaviour of the Rossby wave
component. Solving Eq.(40) for these prescribed radiative and
drag timescales yields a decay timescale of ∼ 0.38 (in non–
dimensional units) for both Rossby and Kelvin waves, while the
decay timescale of the gravity waves is ∼ 0.36. Therefore, when
τdrag = 105s and τrad,top = 104s we have Kelvin waves prop-
agation, with a decay timescale long enough for the waves to
traverse the entire planet and comparable lifetimes for all three
wave types considered (Kelvin, Rossby and gravity). In this in-
stance we expect the steady state of the atmosphere to be a com-
bination of planetary waves all with roughly the same magni-
tude (depending on the projection of the heating function), which
leads to the the chevron shaped pattern predicted by Showman
& Polvani (2011) in the Matsuno-Gill circulation. This is con-
firmed by Figure 5 of Komacek & Showman (2016), where, in
the limit discussed, the linear steady state is similar to that shown
in our Figure 1a.

These comparisons of our estimations with results from this
work and previous studies show that our semi–analytical anal-
ysis is actually rather powerful in understanding the resulting
linear steady state response of a hot Jupiter like atmosphere. The
natural next step is to explore the implications for numerical sim-
ulations of a hot Jupiter atmosphere from the initial condition to
the final superrotating state.

5.2. Order of magnitude analysis

In this section, we estimate the maximum forcing under which
the consideration of a linear steady state is relevant, then we esti-
mate the time dependent wave response in the weak drag regime.

As we are performing a linear study, for constant τrad and
τdrag the value of the maximum velocity is proportional to the
amplitude of the forcing, which is well represented by the
dayside—nightside equilibrium temperature difference we ap-
ply at the top of the atmosphere, ∆Teq,top. Assuming that the
radiative timescale as a function of pressure within the atmo-
sphere is appropriately represented by the polynomial fit of Heng
et al. (2011), adapted from Iro et al. (2005), the amplitude of the
MG–circulation will then only depend on ∆Teq,top and the drag
timescale.

Denoting the zonal velocity of the linear steady state as uMG,
the linear steady state can only be reached if the non–linear terms
can be neglected when u = uMG, i.e., once the linear steady
state is formed. The non–linear terms scale with the zonal advec-
tion, uMG∂uMG/∂x ∼ u2

MG/L, where L is a characteristic length.
Whereas, the linear terms are of the order of uMG/τdrag. There-
fore, equating these two estimates provides a maximum zonal
speed for which the non–linear terms may be accurately ne-
glected, umax, where

umax ∼
L

τdrag
, (53)

and above which a linear steady state will not be reached by the
3D GCM. For the case of hot Jupiters, L ranges from half the

planetary circumference in the MG case to the full circumfer-
ence in the superrotating case i.e., L ∼ πR. If we denote the
maximum zonal, equatorial wind by uMG,1, for the MG solution
with ∆Teq,top = 1K, using the linear relationship of uMG to the
forcing we have

uMG ≈ uMG,1 ×

(
∆Teq,top

1K

)
, (54)

for any ∆Teq,top at a constant τdrag. Combining Eqs.(53) and (54)
then yields a maximum forcing temperature difference value for
which the linear steady state can be reached:(
∆Tmax

1K

)
≈

1
uMG,1

L
τdrag

. (55)

For equilibrium temperature contrast at the top of the atmosphere
greater than the value in Eq.(55) non–linear effects can no longer
be neglected during the acceleration to the linear steady state,
which would not be reached by a GCM. This has already been
noted in Section 3.3.2 of Tsai et al. (2014), where they acknowl-
edge that their analysis is strictly valid only in the strong or mod-
erate damping scenario. As we see in Eq.(55), if τdrag is too large,
i.e. a low damping scenario, the maximum forcing will be very
small, and the linear approximation becomes invalid for forc-
ing amplitudes relevant to hot Jupiters. This analysis allows us
to more rigorously define the weak, modest and strong damping
regimes we had previously mentioned in Section 2.

In the strong or moderate damping scenario, ∆Teq,top .
∆Tmax, the atmosphere first reaches the linear steady solution
and then the subsequent evolution is controlled by non linear
acceleration. In this regime, the non linear evolution from the
Matsuno-Gill linear steady state is given by ∂uMG/∂t ∼ u2

MG/L,
where the u2

MG/L term comes from advection, then the charac-
teristic time τevol for the atmosphere to significantly depart from
the MG state is

τevol =
L

uMG
. (56)

This limit is that studied in Tsai et al. (2014), where the waves
change the mean flow in a quasi–static way leading to the emer-
gence and equilibration of superrotation.

In the low damping scenario however, the atmosphere never
reaches the MG steady state, and non linear considerations
must be taken into account when the characteristic speed ex-
ceeds umax (hence Eq.(29) is irrelevant and only Eq.(27)-(28)
can be used to understand the transition to superrotation). Let
us suppose for example, that the atmosphere is composed of two
waves: a slowly oscillating, slowly decaying Rossby wave, hence
ν1, σ1 � 1 and a quickly oscillating, strongly damped Kelvin
wave with ν2, σ2 � 1. Our analysis of Section 4 shows that
when τrad ∼ 104 s and τdrag ∼ 106 s Rossby waves indeed have
small frequency and decay rate whereas Kelvin waves have or-
der of magnitude higher frequencies and decay rates (provided
they can propagate). In this simplified case, Eq.(28) simplifies to

XF =
q1

σ1 − iν1
X̃1(x, y)

(
1 − e(iν1−σ1)(t)

)
+

q2

σ2 − iν2
X̃2(x, y)

(
1 − e(iν2−σ2)(t)

)
, (57)

where XF is the time dependent solution vector. We know that
in the linear steady state, assuming q1 ∼ q2, the Rossby wave
component will hold much more power than the Kelvin wave as
|iν1 − σ1| � |iν2 − σ2|. However, if we select a time t such that
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|iν2 − σ2|t � 1 and (necessarily) |iν1 − σ1|t � 1, Eq.(57) can be
linearised to first order, yielding

XF(σ1t, σ2t � 1) ≈ q1X̃1t + q2X̃2t . (58)

Therefore, in the limit of very early times in the evolution the
two wave components in the time dependent solution of the at-
mosphere are comparable (provided q1 ∼ q2). The wave com-
ponents remain comparable even when |iν2 − σ2|t ∼ 1 but
|iν1 − σ1|t � 1, where the exponential term for the Kelvin wave
is almost zero, but the linearisation holds for the Rossby wave,
hence,

XF(σ1t � 1, σ2t & 1) ≈ q1X̃1t +
q2

σ2 − iν2
X̃2 . (59)

Dividing the amplitude of our first, Rossby wave, in this linear
time dependent state, α1, by the amplitude of wave 2, α2 yields,∣∣∣∣∣α1

α2

∣∣∣∣∣ =

∣∣∣∣∣q1

q2
(σ2 − iν2)t

∣∣∣∣∣ & q1

q2
. (60)

Provided that the projection of the heating function on the two
wave components are similar i.e. q1 ∼ q2, the time dependent
solution will exhibit comparable amplitudes for both waves be-
fore the (slowest) Rossby wave has grown much larger than the
asymptotic amplitude of the Kelvin wave. However, the steady
state will be dominated by the Rossby wave component. There-
fore, although the linear steady state strongly depends on τrad
and τdrag, in the limits of short timescales the structure of the at-
mosphere only depends on the projection of the heating function
on the propagating waves.

This analysis suggests that the linear steady state is not
responsible for accelerating superrotation in hot Jupiter atmo-
spheres for the low drag limit, and allows us to resolve the
problem explained in Section 2.2. As discussed in Section 2.2,
superrotating atmospheres were found by Komacek & Show-
man (2016) despite structures implying negative convergence
of momentum at the equator in the linear limit (a ’reverse’ MG
structure), in contradiction with the mechanism of Showman &
Polvani (2011) which invokes the linear MG steady state solu-
tion.

This problem persists for physically plausible choices on
the equilibrium temperature contrast and the drag and radiative
timescale, typically, ∆Teq,top = 500 K, τdrag ∼ 5 = 105 s and
τrad = 5 × 104 s which yields umax ∼ 200m.s−1. When solved
numerically, we obtain uMG,1 ∼ 5m.s−1 hence ∆Tmax ∼ 150
K: the linear steady state cannot be reached. Specifically, after
one day of simulation, our analysis shows that the linear steady
state will not have been reached but numerically we already have
u > umax, hence non linear effects can not be neglected. Regard-
ing the dissipation timescales for the waves (Section 4), this oc-
curs at σK t, νK t ∼ 1 and σRt, νRt � 1, where νK , νR are the
Kelvin and Rossby waves frequencies, respectively, and σK and
σR the Kelvin and Rossby dissipation rate, respectively. There-
fore, when non linear terms must be taken into account, the struc-
ture of the atmosphere exhibits similar contribution in Rossby
and Kelvin waves, as in Figure 1a, and favours the meridional
convergence of eastward momentum at the equator, whereas the
linear steady state (our Figure 1b) would tend to decelerate the
equator but is never reached. We study this further in the next
section using our own GCM (the Unified Model, UM, presented
in Mayne et al. 2014; Mayne et al. 2017).

We must underline that this separation of scales between lin-
ear and non linear behaviour is obviously very simplified. As

already noted by Showman & Polvani (2011), the non linear ac-
celerations are mostly due to the wave–mean flow interactions
(rather than wave–wave or mean flow–mean flow, as we confirm
in the next section). Therefore, a quasi linear analysis or statis-
tical studies of momentum transfer might allow more rigorous
insight into the jet acceleration (see e.g., Srinivasan & Young
(2012); Tobias & Marston (2013); Bakas & Ioannou (2013);
Bouchet et al. (2013); Bakas et al. (2015)).

5.3. 3D GCM simulations

In order to assess the applicability of the linear shallow water re-
sult developed in this work to a full 3D calculation, we have per-
formed simulations using the UM across a range of forcing sce-
narios. The simulations employ Newtonian heating as discussed
in Mayne et al. (2014), and adopt the baseline hot Jupiter setup
presented in Mayne et al. (2014) which follows that of Heng
et al. (2011) and for the radiative timescale, Iro et al. (2005). For
our simulations we have then varied the day to night temperature
contrast, ∆T from 0.1 to 100K (see Eqs.(B2) and (B3) of Heng
et al. 2011). Obviously, this is only a toy model as we do not
expect to find a tidally locked planet with an effective temper-
ature of 1300K and a day night contrast of 0.1K, but it allows
us to study the physical mechanisms controlling the atmospheric
structure. Atmospheric drag has not been explicitly implemented
in the UM, but is provided by a diffusion scheme as detailed in
Mayne et al. (2014). We have verified that all of our simulations
conserve mass and angular momentum to an order of 10−6. We
use these simulations to first explore the resulting, qualitative
structure of the atmosphere and then the accelerations within it,
in Sections 5.3.1 and 5.3.2, respectively.

5.3.1. Qualitative structure of the atmosphere

As long as the linear effects are dominant, we expect all our sim-
ulations to have qualitatively similar features but with quantita-
tive values that scale with the forcing. After one day of simula-
tion this is indeed the case, where all of our simulations have the
same qualitative structure matching Figure 1a, although the mag-
nitude of the pressure differences and wind velocities vary be-
tween simulations (increasing with larger temperature contrast).
The structure matches the ‘chevron’ shaped pattern of Showman
& Polvani (2011), but we again state that this is not the steady
Matsuno-Gill solution. It is a specific time in the evolution of
the atmosphere when all waves have the same projection in the
circulation, as discussed in the previous section.

Comparing the very low temperature contrast case with lin-
ear steady states from ECLIPS3D, the dissipation within our
simulations is equivalent to τdrag ∼ a few 105s. At P ∼ 80 mbar
the radiative timescale of Heng et al. (2011), adapted from Iro
et al. (2005), is of the order of 2.5 × 104s. For these parame-
ters the linear MG state can only be considered as reached after
∼ 10 days, the time for the gravity and Rossby waves (which
are the most long lived components) to be completely dissipated
(see Section 4.1.5). Figure 5 shows the pressure and wind struc-
ture for three calculations, the first one using ECLIPS3D with
parameters set to those matching the GCM simulations (Figure
5a), and the next two from GCM simulations after 10 days of
simulations, at 80 mbar, for a small and large temperature con-
trast at the top of the atmosphere ∆Teq,top = 1 K (Figure 5b) and
∆Teq,top = 100 K, (Figure 5c).

The ECLIPS3D calculation, hence the linear steady state,
Figure 5a, recovers the dominant mid–latitude Rossby gyres, as-
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sociated with equatorial winds but it clearly differs from Figure
1a in the sense that the equatorial circulation is not impacting
the Rossby gyres significantly. We therefore have an intermedi-
ate between Figures 1a and 1b. For the GCM simulations adopt-
ing ∆Teq,top = 1K, Figure 5b, this circulation is recovered af-
ter 10 days of simulation. For the GCM simulations adopting
∆Teq,top = 100K, Figure 5c, respectively, the longitudinal extent
of the westward wind is reduced after 10 days compared to the
weak forcing regime. Hence, for the simulation with the larger
temperature contrast, after 10 days, the atmosphere has already
diverged from the linear evolution of the atmosphere. Although
both simulations were qualitatively identical after 1 day of simu-
lation, the low forcing simulations then reaches the linear steady
state whereas higher forcing simulations never go through this
state. Using the steady state wind velocities for the smaller tem-
perature contrast simulation, ∼ 2ms−1 and Eq.(56), alongside the
fact that we expect the linear steady wind to scale with the forc-
ing, we can estimate the timescale to depart from the MG state in
the stronger forcing simulation, ∼ 106s, which is about 10 days.
This timescale, matches the timescale estimated above, from the
analysis of the atmospheric waves, for convergence to the MG
state and hence the MG state is never actually reached.

In our simulations, the case of not reaching the linear steady
state occurs for day–night temperature contrasts of ∼ 100K or
greater, at drag timescales of τdrag ∼ a few 105 s (as presented
in Figure 5). If the drag timescale is further increased, the tem-
perature contrast for which the linear steady state could not be
reached would decrease further2, and HD 209458b is rather ex-
pected to experience a ∼ 500 K temperature contrast. Hence it
does not seem possible to reconciliate the initial acceleration of
superrotation with the consideration of steady linear effect. The
linear considerations can only be used in the first day or so of
simulation, and the linear steady state is irrelevant.

Therefore if superrotation does exist in hot Jupiter atmo-
spheres, the steady linear considerations are not likely sufficient
to explain the initial acceleration as non linear effects quickly
dominate. Notably, the study of both Tsai et al. (2014) and Show-
man & Polvani (2011) (and more recently Hammond & Pierre-
humbert 2018) would only apply in the limit of slow evolution,
hence once the atmosphere is already close to a non linear steady
state. This explains why Figure 16 of Tsai et al. (2014) which
represents their linear consideration compares so well with their
Figure 15, taken from 3D numerical simulations: when an initial
superrotation is already settled, the further evolution is slow and
can be understood in the linear limit. However, Tsai et al. (2014)
provide no comparison between the linear expectation and the
3D simulations during the original acceleration phase of super-
rotation. As we have seen in this section, linear considerations
apply as long as we consider the time dependent solution. The
assumption of a linear steady state is not justified in the accel-
eration phase. Therefore, it is worth noting that the westward
shift of the hot spot in the steady linear limit studied by Hin-
dle et al. (2019), with the addition of a magnetic field, is not a
robust enough diagnostic to predict whether the atmosphere is
superrotating.

Interestingly, our low forcing simulation also converged to
a superrotating state after a much longer time (scaling as one
would expect as the inverse of the forcing). This was unexpected
as Figure 5b is not associated with a strong deposition of east-

2 and it is not possible to reduce the drag timescale below ∼ 105s as
it leads to a suppression of superrotation (in this situation, the drag
timescale is lower than the advective timescale of a superrotating jet,
explaining the breaking of superrotation).
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Fig. 5. Pressure (color) and winds (arrows) as a function of longitude
and latitude for (a) linear steady state calculated with ECLIPS3D with
∆Teq,top = 100 K, τdrag = 2 × 105 s and τrad following Iro et al. (2005).
(b): 3D GCM result at the 80 mbar level after 10 days of simulation,
with ∆Teq,top = 1 K and the radiative timescale of Iro et al. (2005). The
characteristic speed is 2 m.s−1; (c): 3D GCM result at the 80 mbar level
after 10 days of simulation, with ∆Teq,top = 100 K and the radiative
timescale of Iro et al. (2005). The characteristic speed is 200 m.s−1
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ward momentum at the equator. More surprisingly, we also re-
cover a superrotating jet for low forcing simulations when we
further increase the drag timescale, and the atmosphere goes
through a linear steady state resembling Figure 1b. To under-
stand this phenomenon, we conclude our study with the consid-
erations of 3D accelerations in the spin up and equilibration of
superrotation for GCM results.

5.3.2. Accelerations

The final step is to study the acceleration of the mean flow in
the initial stages of the acceleration of superrotation within the
3D GCM simulations and assess the relevance of the 2D stud-
ies. As discussed, once the jet is settled and evolving slowly,
the studies of Tsai et al. (2014) and Hammond & Pierrehumbert
(2018) describe the evolution of superrotation, but the initial ac-
celeration is less clear as we have explained through this paper.
For this purpose, we study the acceleration of the jet in a sim-
ulation with ∆Teq,top = 100K and τdrag ∼ 105s, where the first
phases of the development of superrotation can be captured over
about 30 days. Following Mayne et al. (2017) (who adapted the
treatment of Hardiman et al. 2010), the acceleration of the zonal
mean flow can be written as

(ρ u),t = −
(ρv u cos2 φ),φ

r cos2 φ
−

(ρw ur3),r
r3 + 2Ωρv sin φ

− 2Ωρw cos φ − (ρ′u′),t −

[
(ρv)′u′ cos2 φ

]
,φ

r cos2 φ

−

[
(ρw)′u′r3

]
,r

r3 + ρGλ, (61)

where Gλ denotes the body forces acting in the longitudinal
direction (not considered here), the subscripts denote partial
derivatives, and every quantity X is defined as X = X̄ + X′ where
a bar denotes an average on longitude. In this section, we do
not consider the mean flow-mean flow accelerations as they are
negligible during the initial acceleration within our simulations.
However, once the superrotating jet has formed, these accelera-
tions should be taken into account as they balance the eddy ac-
celerations and eventually lead to a non linear steady state (see
notably the conclusions of Tsai et al. 2014).

Following Showman & Polvani (2011), the meridional eddy
accelerations, involving v′ and u′, should lead to momentum
convergence at the equator from the MG steady state whereas
the vertical component acts to decelerate the equatorial region.
In Figure 6 we show the value of (ρ u) for ∆Teq,top = 100K af-
ter 50 days of simulations as well as the vertical and meridional
accelerations. After 50 days, the jet extends from roughly 1mbar
to 1bar with the maximum of (ρ u) around 0.2bar. As in Figure
15 of Tsai et al. (2014), we observe that the vertical accelera-
tions are slowing down the upper part of the jet, while extend-
ing the jet to deeper pressures. The meridional accelerations on
the other hand compensate the vertical component in agreement
with both Tsai et al. (2014) and Showman & Polvani (2011). It
is interesting to note that the explanation for radius inflation of
Tremblin et al. (2017) relies on the vertical wind in the deep at-
mosphere due to the equatorial jet, and that the spin up of the
jet shows that the vertical accelerations are pushing the equato-
rial jet downwards. This seems to point towards a circulation in
depth between the jet and the vertical velocities, that gets deeper
with time.

We have also used these simulations to study the jet accelera-
tion in more detail, during the earlier phases. Firstly, we observe
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Fig. 6. (a) (ρ u) (SI) as a function of pressure and latitude after 50 days
of simulation with ∆Teq,top = 100 K. (b) Vertical eddy acceleration (SI)
for the same simulation. (c) Meridonial eddy acceleration (SI) for the
same simulation.

that the jet sets up initially between 0.08 and 0.1 bar in about
15 days (not shown), and then extends upwards and downwards.
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We show in Figure 7 the meridional and vertical accelerations
after 1, 5 and 20 days in the ∆Teq,top = 100K case.

Figure 7 shows that in the region where superrotation is
the strongest (see Figure 6), the vertical eddy acceleration al-
ways provides the maximum momentum convergence in the first
20 days, although the spatial extent of vertical acceleration de-
creases with time. Additionally, the location where the vertical
motions accelerate the jet gets deeper with time, i.e. moves to
higher pressures. We believe that this can be understood in the
following way: the superrotation does not affect the mid–latitude
eddy circulation, which keeps acting to converge eastward mo-
mentum at the equator. However, as radiation penetrates deeper
and the jet extends, the vertical circulation is changed and the
vertical winds carry momentum away from the jet. This inhibits
the deposition of eastward momentum at the equator, which was
accompanied by a deceleration of westward winds on the night
side of the planet. Globally, it appears that the vertical accelera-
tions set up the initial superrotation, which then tend to decrease
and even change the sign of the vertical acceleration. Then, the
global meridional motions act to sustain the jet once the vertical
eddy acceleration is negative.

A key question is whether one reaches a limiting level of
the day–night temperature contrast, as a proxy for the radiative
forcing, at which the superrotation would transition. Such a tran-
sition would occur once the non–linear terms become important
and depend on the state of the atmosphere at that point. If the
atmosphere is similar to Figure 1a, then superrotation would be
favoured, but for a state such as 1b the superrotation would be
impeded. In our simulations, it seems that there is no threshold to
superrotation, because the vertical accelerations spin-up the ini-
tial jet in all cases. The only limiting aspect is the time to reach
a non linear superrotating state as the forcing gets lower.

In the case of long drag and short radiative timescales Ko-
macek & Showman (2016) have already noted that the merid-
ional motion of the linear steady state is opposite to what is
necessary to drive superrotation, although they do observe that
the non linear steady state is actually superrotating. We have ex-
plained this by considering the time dependent linear state in
Section 5.3.1. More precisely, Figure 8 shows the meridional and
vertical accelerations as a function of time for two simulations
adopting ∆Teq,top = 1K and ∆Teq,top = 100K and the same dissi-
pation.

For both simulations, Figure 8a and Figure 8b, in the first
two days meridional and vertical accelerations are both posi-
tive and of comparable magnitude. This was expected, as during
the first days the atmosphere is comparable to the MG steady
state explored by Showman & Polvani (2011). In the low forcing
case, the vertical accelerations eventually dominate by an order
of magnitude and the meridional terms can even lead to oppos-
ing the creation of a jet (negative values after 15 days). This is
due to the fact that the atmosphere has reached the linear steady
state of Figure 5a, associated with strong vertical accelerations
but almost zero (or negative) meridional accelerations. For the
high forcing case, although vertical accelerations contribute to
the initiation of superrotation, they get smaller with time as the
jet is being created, and eventually become negative (after ∼ 60
days, not shown). This confirms that the vertical accelerations
initiate the jet but then tend to extend it to deeper pressure, while
meridional momentum convergence allows for an equilibrated
state.

Globally, we can now resolve the discrepancy of Figure 4 and
Figure 5 of Komacek & Showman (2016), discussed through-
out this paper (notably Section 2.2 and this section): nonlin-
early superrotating atmospheres can have linear steady states

that seem to oppose the triggering superrotation, in contradic-
tion with Showman & Polvani (2011). The study of Tsai et al.
(2014), in the limit of strong dissipation, does not offer expla-
nation for the apparent paradox. First, as we have shown, the
treatment of the time dependent linear solution shows that the
linear steady state is not relevant in the high forcing case. Af-
ter 1 day, the non linear terms become dominant whereas the
MG steady state would require linear effects to dominate for at
least 10 days. The shape of the atmosphere after 1 day is again
given by our Figure 1a: it is the usual chevron shape pattern of
Showman & Polvani (2011). Therefore, when non linear effects
become dominant, they tend to accelerate the equator whereas
if the linear steady state had been reached the deceleration by
meridional motion could have been dominant: for adequate forc-
ing in hot Jupiter conditions, the state of the atmosphere after 1
day always leads to meridional momentum convergence at the
equator. Then, as seen in Figure 7 and 8, the vertical accelera-
tions also need to be taken into account: at the 80mbar pressure
range, vertical motion triggers the emergence of superrotation
contrary to what is proposed by Showman & Polvani (2011).
Only when superrotation is settled (Figure 6b) do the vertical
accelerations tend to decelerate the jet, and extend it deeper i.e.
to higher pressures.

Later on, once the superrotation is settled, the study of Tsai
et al. (2014) applies to the slower evolution of the atmosphere,
leading to the possible existence of a unique steady state. This
steady state is permitted by both meridional and vertical acceler-
ations, as we have seen throughout this work. This explains why
superrotation is reached even when the dissipation is very low,
although the initial acceleration is not included in the explana-
tion of Tsai et al. (2014).

6. Conclusion

In this study we have explored the initial acceleration of super-
rotation in the context of a hot Jupiter atmosphere. We have also
focused on an inherent discrepancy between the works of Show-
man & Polvani (2011) and Komacek & Showman (2016). Show-
man & Polvani (2011) propose that the superrotation is triggered
by non linear accelerations around the linear steady state, that
converge momentum to the equator. On the other hand, Komacek
& Showman (2016) show that certain configurations that exhibit
superrotation are also associated with momentum divergence at
the equator in the linear steady state limit.

In order to resolve this apparent contradiction, we have stud-
ied the general form of the time dependent linear response of
the atmosphere to a constant, asymmetrical heating. This re-
sponse depends on the shape of the forcing, the global shape
and frequency of the waves it generates and the decay rate of
these waves. Our first conclusion, through the use of ECLIPS3D,
is that changing the longitudinal form of the forcing is not of
prime importance in the qualitative understanding of superrota-
tion, although quantitatively it does affect the results. The use of
a Newtonian cooling scheme with a wavenumber 1 in longitude
is therefore a reasonable approximation.

We have also obtained an equation for the frequency and
decay rates of the propagating waves, as in Heng & Workman
(2014). We could not solve this equation analytically for Rossby
and gravity waves, and have therefore estimated the asymptotic
behaviour of the waves numerically. For Kelvin waves on the
other hand, the analytical solution has been obtained. The esti-
mated decay rates were reported in section 4.1.5 and Figure 3.

From there, we have explained qualitatively the structure of
the linear solutions with different drag and radiative timescales,
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as presented in Figure 5 of Komacek & Showman (2016) and our
Figure 1. The zonal dependency had also been estimated by Wu
et al. (2001) by other means. A major result of this present work
is that in the limit of short times (compared to the damping rates),
the waves present in the decomposition of the heating function
contribute almost equally to the time dependent linear solution.
This tends to create a Matsuno–Gill like circulation (Figure 1a)
in the first day of the evolution of a hot Jupiter atmosphere in
a GCM, although the actual linear steady state would be a "re-
verse" Matsuno-Gill, exhibiting eastward momentum divergence
at the equator (Figure 1b). With order of magnitude analysis, we
have concluded that in simulations representative of hot Jupiters,
the linear steady state could not be reached but non linear terms
were dominant after ∼ 1 day, hence when the atmosphere resem-
bles the Matsuno-Gill circulation. As a consequence, the equator
is accelerated although the linear steady state would tend to de-
celerate the equator, resolving part of the discrepancy between
Komacek & Showman (2016) and Showman & Polvani (2011).

Finally, we have considered the non linear accelerations dur-
ing the spin up of superrotation from 3D GCM simulations with
different contrasts in temperature between the day and night, or
strengths of forcing, to assess the importance of the vertical ac-
celerations. Once the jet is formed, the vertical acceleration tends
to decelerate the upper part of the jet while extending it to deeper
pressure. The meridional acceleration oppose this deceleration,
and a steady state can be reached, as already shown by Tsai et al.
(2014) and Showman & Polvani (2011). On the other hand, dur-
ing the acceleration, the vertical component contributes equally
to the meridional component to form an initial superrotation.
This is in disagreement with Figure 11 of Showman & Polvani
(2011), however, the data for this figure are averaged across the
upper atmosphere (above 30 mbar) where superrotation does not
develop or is weaker. Numerically, it seems that as a jet is ini-
tiated, the vertical circulation is altered preventing the vertical
deposition of eastward momentum at the equator, whereas the
meridional circulation is roughly unchanged.

Overall, in this work, we have studied, on theoretical and
semi analytical grounds the acceleration of superrotation. We
have complemented previous studies to provide a coherent un-
derstanding of the initial acceleration of the equator of hot
Jupiters. Combined with the works of Showman & Polvani
(2011), Tsai et al. (2014); Komacek & Showman (2016); Ham-
mond & Pierrehumbert (2018), a somewhat complete picture of
the initial phase of the atmospheric dynamics of simulated hot
Jupiters can now be drawn.

Our simulations suggest that there are regions of parameter
space for which the linear steady state does not accelerate super-
rotation, but the early spin-up from rest does. This suggests that
multiple long term nonlinear states might be possible, depending
on initial conditions, and it might be a track towards understand-
ing peculiar observations such that of Dang et al. (2018).
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Fig. 7. Left column: meridional eddy accelerations as a function of pressure and latitude in the ∆Teq,top = 100K case after 1 (top), 5 (middle) and
20 (bottom) days. Right column: same for vertical eddy acceleration. Units in kg.m−2.s−2
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Fig. 8. Eddy accelerations at the equator at the 80 mbar pressure level
as a function of time for (a): ∆Teq,top = 1K, (b): ∆Teq,top = 100K
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Appendix A: Non orthogonality in the case
τrad , τdrag

In the case τrad = τdrag, Matsuno (1966) obtained a simple equa-
tion linking un,l and vn,l, the horizontal speeds of the eigenvector
(n, l), from Eqs.(7) and (9):

un,l =
ωn,lyvn,l + k∂vn,l/∂y
i(ωn,l − k)(ωn,l + k)

. (A.1)

A similar equation is obtained for hn,l. As vn,l ∝ ψn(y) =

Hn(y)e−y2/2, with Hn the nth Hermite polynomial, the use of the
recurrence relations of the Hermite polynomials:

dHn(y)
dy

= 2nHn−1(y), (A.2)

Hn+1(y) = 2yHn(y) − 2nHn−1(y), (A.3)

implies that the eigenvector (n,l) is simply written as:

vn,l
un,l
hn,l

 =


i(ω2

n,l − k2)ψn(y)
1
2

(ωn,l − k)ψn+1(y) + n(ωn,l + k)ψn−1(y)
1
2

(ωn,l − k)ψn+1(y) − n(ωn,l + k)ψn−1(y)

 . (A.4)

The orthogonality of the eigenvectors is easily proven, and the
completeness is proved by use of the completeness of the Her-
mite polynomial functions.

In the case τrad , τdrag, Eq.(A.1) is slightly changed to get:

un,l =
(iωn,l + τ−1

rad)yvn,l + ik∂vn,l/∂y

k2 + (iωn,l + τ−1
rad)(iωn,l + τ−1

drag)
, (A.5)

and we recall that vn,l ∝ Hn(cn,ly)e−c2
n,ly

2/2 where

c4
n,l =

iωn,l + τ−1
rad

iωn,l + τ−1
drag

. (A.6)

Therefore, the expression of the eigenvector (n,l) is:

vn,l
un,l
hn,l

 =


(k2 + (iωn,l + τ−1

rad)(iωn,l + τ−1
drag))ψn(cn,ly)

1
2

 iωn,l + τ−1
rad

cn,l
− ikcn,l

ψn+1(cn,ly) + n
 iωn,l + τ−1

rad

cn,l
+ ikcn,l

ψn−1(cn,ly)

1
2

(
cn,l(iωn,l + τ−1

drag) −
ik
cn,l

)
ψn+1(cn,ly) − n

(
cn,l(iωn,l + τ−1

drag) +
ik
cn,l

)
ψn−1(cn,ly)


.

(A.7)

Because of the dependency with cn,l in the parabolic cylinder
function, the eigenvectors of Eq.A.7 are not orthogonal anymore
(the calculation is cumbersome but with no difficulty). On the
other hand, it is easily shown that the set of eigenvectors (n,l)
are linearly independent (thanks to the Hermite polynomials).
A rigorous proof would be needed to assess that they form a
complete set, allowing for a projection of the heating function
onto these eigenvectors.

Appendix B: Solutions to Eq.(40)

Appendix B.1: The argument principle

Left hand side of Eq.(39) may be confused with a second order
polynomial, but the dependency of c with ω actually leads to a
polynomial of order 6. From Eq.(39) and Eq.(34), we obtain an
equation for X = c2 :

−X6 +

(
2i(2n + 1)∆τ

k

)
X5 + (3 + 2ik∆τ)X4 −

(
4i(2n + 1)∆τ

k

)
X3

+

(
−3 +

8i∆τ3

k
− 4ik∆τ

)
X2 +

(
2i(2n + 1)∆τ

k

)
X + (1 + 2ik∆τ) = 0 ,

(B.1)

with ∆τ = (τ−1
drag − τ

−1
rad)/2. Determining the number of propagat-

ing waves therefore consists in determining the number of roots
of Eq.(B.1) with a positive real part, as explained in section 4.
We will make use of the argument principle: denoting P(X) the
polynomial in X of Eq.(B.1), the number N of roots of P in a
domain K is given by :

N(γ) =
1

2iπ

∮
γ

P′(z)
P(z)

dz , (B.2)

where γ is a positively oriented contour encompassing K. Denot-
ing C1/2,r the semi–circle of radius r, centered on the origin and
cut by the pure imaginary line (Figure B.1), the number of zeros
of P with positive real part is given by Eq.(B.2) with γ = C1/2,r
in the limit r → ∞.

iR

R

r

-r
C
1/2,r

Fig. B.1. Graphical representation of the C1/2,r contour, encompassing
the complex numbers with positive real part when r → ∞.
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The right hand side of Eq.(B.2) can be estimated by decom-
posing the integral on the pure imaginary line and on the circle
of radius r. Namely:

2iπN(C1/2,r) =

∫ −r

r

P′(it)
P(it)

idt +

∫ π/2

−π/2

P′(r exp(iθ))
P(r exp(iθ))

ri exp(iθ)dθ .

(B.3)

For large r, the second term of this expression can be calcu-
lated thanks to the asymptotical expansion of a polynomial of
order 6:

P′(r exp(iθ))
P(r exp(iθ))

=
6

r exp(iθ)
+ O

(
1
r2

)
. (B.4)

Hence the second term in the right hand side of Eq.(B.3) tends
to 6iπ when r → ∞.

The first term deserves further consideration. If the image of
the imaginary numbers by P does not cross a given half line D
with origin at z = 0, said otherwise P(iR) ⊂ C\D, we can define a
holomorphic function Ln such that Ln(exp(z)) = exp(Ln(z)) = z
and in that case:

∫ −r

r

P′(it)
P(it)

idt =

∫ −r

r

d
dt

Ln(P(it))dt

= Ln
(

P(−ir)
P(ir)

)
→r→∞ Ln(1) = 0 , (B.5)

where the limit comes from the fact that P is an even degree
polynomial. In that case, our two expressions for the terms of
the right hand side of Eq.(B.3) would yield:

N(C1/2,∞) = 3 , (B.6)

confirming that Eq.(40) has exactly three roots of positive real
part. We are therefore going to show that, except for n = 0, the
image of the imaginary numbers by P is always included in C \
iR− or C \ iR+, where iR− and iR+ are the imaginary numbers
with negative and positive imaginary part respectively.

Appendix B.2: Image of the polynomial

With further calculation one can show that the polynomial P
from Eq.(B.1) can be written:

P(iY) = (1+Y2)2(Y2−2αnY +1)+2ik∆τ(Y4−2(2α2
0−1)Y2 +1) ,

(B.7)

for Y ∈ R and with αn = (2n + 1)∆τ/k. Hence we can write the
imaginary part of P(iY) as :

=(P(iY)) = 2k∆τ(Y2 − 2α0Y + 1)(Y2 + 2α0Y + 1) . (B.8)

There are two cases:

– if |α0| = |∆τ/k| < 1, the imaginary part of P(iY) has no roots
for Y ∈ R. Hence for all n, P(iR) ⊂ C\iR− or P(iR) ⊂ C\iR+

depending on the sign of ∆τ, and we have the result: for all n,
there are exactly three roots of positive real part of Eq.(40),
hence only three waves propagate.

– For |α0| = |∆τ/k| > 1, the real part of the polynomial is:

<(P(iY)) = (1 + Y2)2(Y2 − 2αnY + 1) , (B.9)

which has two real roots:

y±n = αn ±

√
α2

n − 1 . (B.10)

Calculating the imaginary part of P for Y = y±n yields:

=(P(iy±n )) = (2k∆τ)(α2
n − α

2
0)(4y±n

2) . (B.11)

Hence, for n > 0 the imaginary part of P(iy±n ) is always of
the same sign as ∆τ: for all y, P(iy) cannot be an imaginary
number with a negative (resp. positive) imaginary part if ∆τ
is positive (resp. negative). Therefore P(iR) ⊂ C \ iR− (resp.
P(iR) ⊂ C \ iR+) and we have the same result: for n > 0,
there are exactly three roots of positive real part of Eq.(40).

We therefore have confirmed that for |∆τ/k| < 1, only three
waves propagate for all n and that this results holds for |∆τ/k| > 1
and n > 0. The case |∆τ/k| > 1 and n = 0 is more complicated
as when the real part of P(iy) cancels its imaginary part cancels
as well and we can’t apply the same argument as for n > 0.
However, it means that the polynomial P for n=0, P0, can be
easily factorized:

P0(iY) = (Y2 − 2α0Y + 1)
{
(1 + Y2)2 + 2ik∆τ(Y2 + 2α0Y + 1)

}
,

(B.12)

which yields:

P0(Y) = (−Y2 + 2iα0Y + 1)
{
(1 − Y2)2 + 2ik∆τ(−Y2 − 2iα0Y + 1)

}
≡ (−Y2 + 2iα0Y + 1)Q(Y) . (B.13)

Looking for the roots of P0 with positive real part is therefore
equivalent to looking for the roots of Q with positive real part.
If we can show that Q(iR) ⊂ C \ iR− or Q(iR) ⊂ C \ iR+, then
we can use the argument principle on Q, a polynomial of order
4, and Eq.(B.3) will ensure that P has only 2 roots with positive
real part. This is easily proven by looking at the real part of Q:

<(Q(iY)) = (1 + Y2)2 > 0 , (B.14)

hence for all y ∈ R the real part of Q(iy) never cancels hence
Q(iR) ⊂ C \ iR: P has only two roots of positive real part and
only two waves can propagate.

It might seem surprising to have a different behaviour for
n = 0, but this was already obtained by Matsuno (1966) where
only two of the three solutions of the n = 0 case were actual so-
lutions of the linearised equations of motion. When considering
that τdrag , τrad, this degeneracy is removed when |∆τ/k| > 1
where only two roots of the polynomial have positive real part.
These findings have been tested and confirmed numerically.
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